libcarla/include/system/boost/math/special_functions/daubechies_scaling.hpp
2024-10-18 13:19:59 +08:00

479 lines
15 KiB
C++

/*
* Copyright Nick Thompson, John Maddock 2020
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_MATH_SPECIAL_DAUBECHIES_SCALING_HPP
#define BOOST_MATH_SPECIAL_DAUBECHIES_SCALING_HPP
#include <vector>
#include <array>
#include <cmath>
#include <thread>
#include <future>
#include <iostream>
#include <boost/math/special_functions/detail/daubechies_scaling_integer_grid.hpp>
#include <boost/math/filters/daubechies.hpp>
#include <boost/math/interpolators/detail/cubic_hermite_detail.hpp>
#include <boost/math/interpolators/detail/quintic_hermite_detail.hpp>
#include <boost/math/interpolators/detail/septic_hermite_detail.hpp>
namespace boost::math {
template<class Real, int p, int order>
std::vector<Real> daubechies_scaling_dyadic_grid(int64_t j_max)
{
using std::isnan;
using std::sqrt;
auto c = boost::math::filters::daubechies_scaling_filter<Real, p>();
Real scale = sqrt(static_cast<Real>(2))*(1 << order);
for (auto & x : c)
{
x *= scale;
}
auto phik = detail::daubechies_scaling_integer_grid<Real, p, order>();
// Maximum sensible j for 32 bit floats is j_max = 22:
if (std::is_same_v<Real, float>)
{
if (j_max > 23)
{
throw std::logic_error("Requested dyadic grid more dense than number of representables on the interval.");
}
}
std::vector<Real> v(2*p + (2*p-1)*((1<<j_max) -1), std::numeric_limits<Real>::quiet_NaN());
v[0] = 0;
v[v.size()-1] = 0;
for (int64_t i = 0; i < static_cast<int64_t>(phik.size()); ++i) {
v[i*(1uLL<<j_max)] = phik[i];
}
for (int64_t j = 1; j <= j_max; ++j)
{
int64_t k_max = v.size()/(int64_t(1) << (j_max-j));
for (int64_t k = 1; k < k_max; k += 2)
{
// Where this value will go:
int64_t delivery_idx = k*(1uLL << (j_max-j));
// This is a nice check, but we've tested this exhaustively, and it's an expensive check:
//if (delivery_idx >= static_cast<int64_t>(v.size())) {
// std::cerr << "Delivery index out of range!\n";
// continue;
//}
Real term = 0;
for (int64_t l = 0; l < static_cast<int64_t>(c.size()); ++l)
{
int64_t idx = k*(int64_t(1) << (j_max - j + 1)) - l*(int64_t(1) << j_max);
if (idx < 0)
{
break;
}
if (idx < static_cast<int64_t>(v.size()))
{
term += c[l]*v[idx];
}
}
// Again, another nice check:
//if (!isnan(v[delivery_idx])) {
// std::cerr << "Delivery index already populated!, = " << v[delivery_idx] << "\n";
// std::cerr << "would overwrite with " << term << "\n";
//}
v[delivery_idx] = term;
}
}
return v;
}
namespace detail {
template<class RandomAccessContainer>
class matched_holder {
public:
using Real = typename RandomAccessContainer::value_type;
matched_holder(RandomAccessContainer && y, RandomAccessContainer && dydx, int grid_refinements, Real x0) : x0_{x0}, y_{std::move(y)}, dy_{std::move(dydx)}
{
inv_h_ = (1 << grid_refinements);
Real h = 1/inv_h_;
for (auto & dy : dy_)
{
dy *= h;
}
}
inline Real operator()(Real x) const
{
using std::floor;
using std::sqrt;
// This is the exact Holder exponent, but it's pessimistic almost everywhere!
// It's only exactly right at dyadic rationals.
//Real const alpha = 2 - log(1+sqrt(Real(3)))/log(Real(2));
// We're gonna use alpha = 1/2, rather than 0.5500...
Real s = (x-x0_)*inv_h_;
Real ii = floor(s);
auto i = static_cast<decltype(y_.size())>(ii);
Real t = s - ii;
Real dphi = dy_[i+1];
Real diff = y_[i+1] - y_[i];
return y_[i] + (2*dphi - diff)*t + 2*sqrt(t)*(diff-dphi);
}
int64_t bytes() const
{
return 2*y_.size()*sizeof(Real) + sizeof(this);
}
private:
Real x0_;
Real inv_h_;
RandomAccessContainer y_;
RandomAccessContainer dy_;
};
template<class RandomAccessContainer>
class matched_holder_aos {
public:
using Point = typename RandomAccessContainer::value_type;
using Real = typename Point::value_type;
matched_holder_aos(RandomAccessContainer && data, int grid_refinements, Real x0) : x0_{x0}, data_{std::move(data)}
{
inv_h_ = Real(1uLL << grid_refinements);
Real h = 1/inv_h_;
for (auto & datum : data_)
{
datum[1] *= h;
}
}
inline Real operator()(Real x) const
{
using std::floor;
using std::sqrt;
Real s = (x-x0_)*inv_h_;
Real ii = floor(s);
auto i = static_cast<decltype(data_.size())>(ii);
Real t = s - ii;
Real y0 = data_[i][0];
Real y1 = data_[i+1][0];
Real dphi = data_[i+1][1];
Real diff = y1 - y0;
return y0 + (2*dphi - diff)*t + 2*sqrt(t)*(diff-dphi);
}
int64_t bytes() const
{
return data_.size()*data_[0].size()*sizeof(Real) + sizeof(this);
}
private:
Real x0_;
Real inv_h_;
RandomAccessContainer data_;
};
template<class RandomAccessContainer>
class linear_interpolation {
public:
using Real = typename RandomAccessContainer::value_type;
linear_interpolation(RandomAccessContainer && y, RandomAccessContainer && dydx, int grid_refinements) : y_{std::move(y)}, dydx_{std::move(dydx)}
{
s_ = (1 << grid_refinements);
}
inline Real operator()(Real x) const
{
using std::floor;
Real y = x*s_;
Real k = floor(y);
int64_t kk = static_cast<int64_t>(k);
Real t = y - k;
return (1-t)*y_[kk] + t*y_[kk+1];
}
inline Real prime(Real x) const
{
using std::floor;
Real y = x*s_;
Real k = floor(y);
int64_t kk = static_cast<int64_t>(k);
Real t = y - k;
return (1-t)*dydx_[kk] + t*dydx_[kk+1];
}
int64_t bytes() const
{
return (1 + y_.size() + dydx_.size())*sizeof(Real) + sizeof(y_) + sizeof(dydx_);
}
private:
Real s_;
RandomAccessContainer y_;
RandomAccessContainer dydx_;
};
template<class RandomAccessContainer>
class linear_interpolation_aos {
public:
using Point = typename RandomAccessContainer::value_type;
using Real = typename Point::value_type;
linear_interpolation_aos(RandomAccessContainer && data, int grid_refinements, Real x0) : x0_{x0}, data_{std::move(data)}
{
s_ = Real(1uLL << grid_refinements);
}
inline Real operator()(Real x) const
{
using std::floor;
Real y = (x-x0_)*s_;
Real k = floor(y);
int64_t kk = static_cast<int64_t>(k);
Real t = y - k;
return (t != 0) ? (1-t)*data_[kk][0] + t*data_[kk+1][0] : data_[kk][0];
}
inline Real prime(Real x) const
{
using std::floor;
Real y = (x-x0_)*s_;
Real k = floor(y);
int64_t kk = static_cast<int64_t>(k);
Real t = y - k;
return t != 0 ? (1-t)*data_[kk][1] + t*data_[kk+1][1] : data_[kk][1];
}
int64_t bytes() const
{
return sizeof(this) + data_.size()*data_[0].size()*sizeof(Real);
}
private:
Real x0_;
Real s_;
RandomAccessContainer data_;
};
template <class T>
struct daubechies_eval_type
{
typedef T type;
static const std::vector<T>& vector_cast(const std::vector<T>& v) { return v; }
};
template <>
struct daubechies_eval_type<float>
{
typedef double type;
inline static std::vector<float> vector_cast(const std::vector<double>& v)
{
std::vector<float> result(v.size());
for (unsigned i = 0; i < v.size(); ++i)
result[i] = static_cast<float>(v[i]);
return result;
}
};
template <>
struct daubechies_eval_type<double>
{
typedef long double type;
inline static std::vector<double> vector_cast(const std::vector<long double>& v)
{
std::vector<double> result(v.size());
for (unsigned i = 0; i < v.size(); ++i)
result[i] = static_cast<double>(v[i]);
return result;
}
};
struct null_interpolator
{
template <class T>
T operator()(const T&)
{
return 1;
}
};
} // namespace detail
template<class Real, int p>
class daubechies_scaling {
//
// Some type manipulation so we know the type of the interpolator, and the vector type it requires:
//
typedef std::vector<std::array<Real, p < 6 ? 2 : p < 10 ? 3 : 4>> vector_type;
//
// List our interpolators:
//
typedef std::tuple<
detail::null_interpolator, detail::matched_holder_aos<vector_type>, detail::linear_interpolation_aos<vector_type>,
interpolators::detail::cardinal_cubic_hermite_detail_aos<vector_type>, interpolators::detail::cardinal_quintic_hermite_detail_aos<vector_type>,
interpolators::detail::cardinal_septic_hermite_detail_aos<vector_type> > interpolator_list;
//
// Select the one we need:
//
typedef std::tuple_element_t<
p == 1 ? 0 :
p == 2 ? 1 :
p == 3 ? 2 :
p <= 5 ? 3 :
p <= 9 ? 4 : 5, interpolator_list> interpolator_type;
public:
daubechies_scaling(int grid_refinements = -1)
{
static_assert(p < 20, "Daubechies scaling functions are only implemented for p < 20.");
static_assert(p > 0, "Daubechies scaling functions must have at least 1 vanishing moment.");
if constexpr (p == 1)
{
return;
}
else {
if (grid_refinements < 0)
{
if (std::is_same_v<Real, float>)
{
if (grid_refinements == -2)
{
// Control absolute error:
// p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
std::array<int, 20> r{ -1, -1, 18, 19, 16, 11, 8, 7, 7, 7, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3 };
grid_refinements = r[p];
}
else
{
// Control relative error:
// p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
std::array<int, 20> r{ -1, -1, 21, 21, 21, 17, 16, 15, 14, 13, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11 };
grid_refinements = r[p];
}
}
else if (std::is_same_v<Real, double>)
{
// p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
std::array<int, 20> r{ -1, -1, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 18, 18, 18 };
grid_refinements = r[p];
}
else
{
grid_refinements = 21;
}
}
// Compute the refined grid:
// In fact for float precision I know the grid must be computed in double precision and then cast back down, or else parts of the support are systematically inaccurate.
std::future<std::vector<Real>> t0 = std::async(std::launch::async, [&grid_refinements]() {
// Computing in higher precision and downcasting is essential for 1ULP evaluation in float precision:
auto v = daubechies_scaling_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 0>(grid_refinements);
return detail::daubechies_eval_type<Real>::vector_cast(v);
});
// Compute the derivative of the refined grid:
std::future<std::vector<Real>> t1 = std::async(std::launch::async, [&grid_refinements]() {
auto v = daubechies_scaling_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 1>(grid_refinements);
return detail::daubechies_eval_type<Real>::vector_cast(v);
});
// if necessary, compute the second and third derivative:
std::vector<Real> d2ydx2;
std::vector<Real> d3ydx3;
if constexpr (p >= 6) {
std::future<std::vector<Real>> t3 = std::async(std::launch::async, [&grid_refinements]() {
auto v = daubechies_scaling_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 2>(grid_refinements);
return detail::daubechies_eval_type<Real>::vector_cast(v);
});
if constexpr (p >= 10) {
std::future<std::vector<Real>> t4 = std::async(std::launch::async, [&grid_refinements]() {
auto v = daubechies_scaling_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 3>(grid_refinements);
return detail::daubechies_eval_type<Real>::vector_cast(v);
});
d3ydx3 = t4.get();
}
d2ydx2 = t3.get();
}
auto y = t0.get();
auto dydx = t1.get();
if constexpr (p >= 2)
{
vector_type data(y.size());
for (size_t i = 0; i < y.size(); ++i)
{
data[i][0] = y[i];
data[i][1] = dydx[i];
if constexpr (p >= 6)
data[i][2] = d2ydx2[i];
if constexpr (p >= 10)
data[i][3] = d3ydx3[i];
}
if constexpr (p <= 3)
m_interpolator = std::make_shared<interpolator_type>(std::move(data), grid_refinements, Real(0));
else
m_interpolator = std::make_shared<interpolator_type>(std::move(data), Real(0), Real(1) / (1 << grid_refinements));
}
else
m_interpolator = std::make_shared<detail::null_interpolator>();
}
}
inline Real operator()(Real x) const
{
if (x <= 0 || x >= 2*p-1)
{
return 0;
}
return (*m_interpolator)(x);
}
inline Real prime(Real x) const
{
static_assert(p > 2, "The 3-vanishing moment Daubechies scaling function is the first which is continuously differentiable.");
if (x <= 0 || x >= 2*p-1)
{
return 0;
}
return m_interpolator->prime(x);
}
inline Real double_prime(Real x) const
{
static_assert(p >= 6, "Second derivatives require at least 6 vanishing moments.");
if (x <= 0 || x >= 2*p - 1)
{
return Real(0);
}
return m_interpolator->double_prime(x);
}
std::pair<Real, Real> support() const
{
return {Real(0), Real(2*p-1)};
}
int64_t bytes() const
{
return m_interpolator->bytes() + sizeof(m_interpolator);
}
private:
std::shared_ptr<interpolator_type> m_interpolator;
};
}
#endif