libcarla/include/system/boost/math/quadrature/tanh_sinh.hpp
2024-10-18 13:19:59 +08:00

290 lines
12 KiB
C++

// Copyright Nick Thompson, 2017
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
/*
* This class performs tanh-sinh quadrature on the real line.
* Tanh-sinh quadrature is exponentially convergent for integrands in Hardy spaces,
* (see https://en.wikipedia.org/wiki/Hardy_space for a formal definition), and is optimal for a random function from that class.
*
* The tanh-sinh quadrature is one of a class of so called "double exponential quadratures"-there is a large family of them,
* but this one seems to be the most commonly used.
*
* As always, there are caveats: For instance, if the function you want to integrate is not holomorphic on the unit disk,
* then the rapid convergence will be spoiled. In this case, a more appropriate quadrature is (say) Romberg, which does not
* require the function to be holomorphic, only differentiable up to some order.
*
* In addition, if you are integrating a periodic function over a period, the trapezoidal rule is better.
*
* References:
*
* 1) Mori, Masatake. "Quadrature formulas obtained by variable transformation and the DE-rule." Journal of Computational and Applied Mathematics 12 (1985): 119-130.
* 2) Bailey, David H., Karthik Jeyabalan, and Xiaoye S. Li. "A comparison of three high-precision quadrature schemes." Experimental Mathematics 14.3 (2005): 317-329.
* 3) Press, William H., et al. "Numerical recipes third edition: the art of scientific computing." Cambridge University Press 32 (2007): 10013-2473.
*
*/
#ifndef BOOST_MATH_QUADRATURE_TANH_SINH_HPP
#define BOOST_MATH_QUADRATURE_TANH_SINH_HPP
#include <cmath>
#include <limits>
#include <memory>
#include <boost/math/quadrature/detail/tanh_sinh_detail.hpp>
namespace boost{ namespace math{ namespace quadrature {
template<class Real, class Policy = policies::policy<> >
class tanh_sinh
{
public:
tanh_sinh(size_t max_refinements = 15, const Real& min_complement = tools::min_value<Real>() * 4)
: m_imp(std::make_shared<detail::tanh_sinh_detail<Real, Policy>>(max_refinements, min_complement)) {}
template<class F>
auto integrate(const F f, Real a, Real b, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval<F>()(std::declval<Real>())) const;
template<class F>
auto integrate(const F f, Real a, Real b, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>())) const;
template<class F>
auto integrate(const F f, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval<F>()(std::declval<Real>())) const;
template<class F>
auto integrate(const F f, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>())) const;
private:
std::shared_ptr<detail::tanh_sinh_detail<Real, Policy>> m_imp;
};
template<class Real, class Policy>
template<class F>
auto tanh_sinh<Real, Policy>::integrate(const F f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval<F>()(std::declval<Real>())) const
{
BOOST_MATH_STD_USING
using boost::math::constants::half;
using boost::math::quadrature::detail::tanh_sinh_detail;
static const char* function = "tanh_sinh<%1%>::integrate";
typedef decltype(std::declval<F>()(std::declval<Real>())) result_type;
static_assert(!std::is_integral<result_type>::value,
"The return type cannot be integral, it must be either a real or complex floating point type.");
if (!(boost::math::isnan)(a) && !(boost::math::isnan)(b))
{
// Infinite limits:
if ((a <= -tools::max_value<Real>()) && (b >= tools::max_value<Real>()))
{
auto u = [&](const Real& t, const Real& tc)->result_type
{
Real t_sq = t*t;
Real inv;
if (t > 0.5f)
inv = 1 / ((2 - tc) * tc);
else if(t < -0.5)
inv = 1 / ((2 + tc) * -tc);
else
inv = 1 / (1 - t_sq);
return f(t*inv)*(1 + t_sq)*inv*inv;
};
Real limit = sqrt(tools::min_value<Real>()) * 4;
return m_imp->integrate(u, error, L1, function, limit, limit, tolerance, levels);
}
// Right limit is infinite:
if ((boost::math::isfinite)(a) && (b >= tools::max_value<Real>()))
{
auto u = [&](const Real& t, const Real& tc)->result_type
{
Real z, arg;
if (t > -0.5f)
z = 1 / (t + 1);
else
z = -1 / tc;
if (t < 0.5)
arg = 2 * z + a - 1;
else
arg = a + tc / (2 - tc);
return f(arg)*z*z;
};
Real left_limit = sqrt(tools::min_value<Real>()) * 4;
result_type Q = Real(2) * m_imp->integrate(u, error, L1, function, left_limit, tools::min_value<Real>(), tolerance, levels);
if (L1)
{
*L1 *= 2;
}
if (error)
{
*error *= 2;
}
return Q;
}
if ((boost::math::isfinite)(b) && (a <= -tools::max_value<Real>()))
{
auto v = [&](const Real& t, const Real& tc)->result_type
{
Real z;
if (t > -0.5)
z = 1 / (t + 1);
else
z = -1 / tc;
Real arg;
if (t < 0.5)
arg = 2 * z - 1;
else
arg = tc / (2 - tc);
return f(b - arg) * z * z;
};
Real left_limit = sqrt(tools::min_value<Real>()) * 4;
result_type Q = Real(2) * m_imp->integrate(v, error, L1, function, left_limit, tools::min_value<Real>(), tolerance, levels);
if (L1)
{
*L1 *= 2;
}
if (error)
{
*error *= 2;
}
return Q;
}
if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b))
{
if (a == b)
{
return result_type(0);
}
if (b < a)
{
return -this->integrate(f, b, a, tolerance, error, L1, levels);
}
Real avg = (a + b)*half<Real>();
Real diff = (b - a)*half<Real>();
Real avg_over_diff_m1 = a / diff;
Real avg_over_diff_p1 = b / diff;
bool have_small_left = fabs(a) < 0.5f;
bool have_small_right = fabs(b) < 0.5f;
Real left_min_complement = float_next(avg_over_diff_m1) - avg_over_diff_m1;
Real min_complement_limit = (std::max)(tools::min_value<Real>(), Real(tools::min_value<Real>() / diff));
if (left_min_complement < min_complement_limit)
left_min_complement = min_complement_limit;
Real right_min_complement = avg_over_diff_p1 - float_prior(avg_over_diff_p1);
if (right_min_complement < min_complement_limit)
right_min_complement = min_complement_limit;
//
// These asserts will fail only if rounding errors on
// type Real have accumulated so much error that it's
// broken our internal logic. Should that prove to be
// a persistent issue, we might need to add a bit of fudge
// factor to move left_min_complement and right_min_complement
// further from the end points of the range.
//
BOOST_MATH_ASSERT((left_min_complement * diff + a) > a);
BOOST_MATH_ASSERT((b - right_min_complement * diff) < b);
auto u = [&](Real z, Real zc)->result_type
{
Real position;
if (z < -0.5)
{
if(have_small_left)
return f(diff * (avg_over_diff_m1 - zc));
position = a - diff * zc;
}
else if (z > 0.5)
{
if(have_small_right)
return f(diff * (avg_over_diff_p1 - zc));
position = b - diff * zc;
}
else
position = avg + diff*z;
BOOST_MATH_ASSERT(position != a);
BOOST_MATH_ASSERT(position != b);
return f(position);
};
result_type Q = diff*m_imp->integrate(u, error, L1, function, left_min_complement, right_min_complement, tolerance, levels);
if (L1)
{
*L1 *= diff;
}
if (error)
{
*error *= diff;
}
return Q;
}
}
return policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds.", a, Policy());
}
template<class Real, class Policy>
template<class F>
auto tanh_sinh<Real, Policy>::integrate(const F f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>())) const
{
BOOST_MATH_STD_USING
using boost::math::constants::half;
using boost::math::quadrature::detail::tanh_sinh_detail;
static const char* function = "tanh_sinh<%1%>::integrate";
if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b))
{
if (b <= a)
{
return policies::raise_domain_error(function, "Arguments to integrate are in wrong order; integration over [a,b] must have b > a.", a, Policy());
}
auto u = [&](Real z, Real zc)->Real
{
if (z < 0)
return f((a - b) * zc / 2 + a, (b - a) * zc / 2);
else
return f((a - b) * zc / 2 + b, (b - a) * zc / 2);
};
Real diff = (b - a)*half<Real>();
Real left_min_complement = tools::min_value<Real>() * 4;
Real right_min_complement = tools::min_value<Real>() * 4;
Real Q = diff*m_imp->integrate(u, error, L1, function, left_min_complement, right_min_complement, tolerance, levels);
if (L1)
{
*L1 *= diff;
}
if (error)
{
*error *= diff;
}
return Q;
}
return policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds.", a, Policy());
}
template<class Real, class Policy>
template<class F>
auto tanh_sinh<Real, Policy>::integrate(const F f, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval<F>()(std::declval<Real>())) const
{
using boost::math::quadrature::detail::tanh_sinh_detail;
static const char* function = "tanh_sinh<%1%>::integrate";
Real min_complement = tools::epsilon<Real>();
return m_imp->integrate([&](const Real& arg, const Real&) { return f(arg); }, error, L1, function, min_complement, min_complement, tolerance, levels);
}
template<class Real, class Policy>
template<class F>
auto tanh_sinh<Real, Policy>::integrate(const F f, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>())) const
{
using boost::math::quadrature::detail::tanh_sinh_detail;
static const char* function = "tanh_sinh<%1%>::integrate";
Real min_complement = tools::min_value<Real>() * 4;
return m_imp->integrate(f, error, L1, function, min_complement, min_complement, tolerance, levels);
}
}
}
}
#endif