373 lines
12 KiB
C++
373 lines
12 KiB
C++
// (C) Copyright 2007-2009 Andrew Sutton
|
|
//
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0 (See accompanying file
|
|
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_GRAPH_CYCLE_HPP
|
|
#define BOOST_GRAPH_CYCLE_HPP
|
|
|
|
#include <vector>
|
|
|
|
#include <boost/config.hpp>
|
|
#include <boost/graph/graph_concepts.hpp>
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/graph/properties.hpp>
|
|
#include <boost/concept/assert.hpp>
|
|
|
|
#include <boost/concept/detail/concept_def.hpp>
|
|
namespace boost
|
|
{
|
|
namespace concepts
|
|
{
|
|
BOOST_concept(CycleVisitor, (Visitor)(Path)(Graph))
|
|
{
|
|
BOOST_CONCEPT_USAGE(CycleVisitor) { vis.cycle(p, g); }
|
|
|
|
private:
|
|
Visitor vis;
|
|
Graph g;
|
|
Path p;
|
|
};
|
|
} /* namespace concepts */
|
|
using concepts::CycleVisitorConcept;
|
|
} /* namespace boost */
|
|
#include <boost/concept/detail/concept_undef.hpp>
|
|
|
|
namespace boost
|
|
{
|
|
|
|
// The implementation of this algorithm is a reproduction of the Teirnan
|
|
// approach for directed graphs: bibtex follows
|
|
//
|
|
// @article{362819,
|
|
// author = {James C. Tiernan},
|
|
// title = {An efficient search algorithm to find the elementary
|
|
// circuits of a graph}, journal = {Commun. ACM}, volume = {13}, number
|
|
// = {12}, year = {1970}, issn = {0001-0782}, pages = {722--726}, doi =
|
|
// {http://doi.acm.org/10.1145/362814.362819},
|
|
// publisher = {ACM Press},
|
|
// address = {New York, NY, USA},
|
|
// }
|
|
//
|
|
// It should be pointed out that the author does not provide a complete analysis
|
|
// for either time or space. This is in part, due to the fact that it's a fairly
|
|
// input sensitive problem related to the density and construction of the graph,
|
|
// not just its size.
|
|
//
|
|
// I've also taken some liberties with the interpretation of the algorithm -
|
|
// I've basically modernized it to use real data structures (no more arrays and
|
|
// matrices). Oh... and there's explicit control structures - not just gotos.
|
|
//
|
|
// The problem is definitely NP-complete, an unbounded implementation of this
|
|
// will probably run for quite a while on a large graph. The conclusions
|
|
// of this paper also reference a Paton algorithm for undirected graphs as being
|
|
// much more efficient (apparently based on spanning trees). Although not
|
|
// implemented, it can be found here:
|
|
//
|
|
// @article{363232,
|
|
// author = {Keith Paton},
|
|
// title = {An algorithm for finding a fundamental set of cycles of a
|
|
// graph}, journal = {Commun. ACM}, volume = {12}, number = {9}, year =
|
|
// {1969}, issn = {0001-0782}, pages = {514--518}, doi =
|
|
// {http://doi.acm.org/10.1145/363219.363232},
|
|
// publisher = {ACM Press},
|
|
// address = {New York, NY, USA},
|
|
// }
|
|
|
|
/**
|
|
* The default cycle visitor provides an empty visit function for cycle
|
|
* visitors.
|
|
*/
|
|
struct cycle_visitor
|
|
{
|
|
template < typename Path, typename Graph >
|
|
inline void cycle(const Path& p, const Graph& g)
|
|
{
|
|
}
|
|
};
|
|
|
|
/**
|
|
* The min_max_cycle_visitor simultaneously records the minimum and maximum
|
|
* cycles in a graph.
|
|
*/
|
|
struct min_max_cycle_visitor
|
|
{
|
|
min_max_cycle_visitor(std::size_t& min_, std::size_t& max_)
|
|
: minimum(min_), maximum(max_)
|
|
{
|
|
}
|
|
|
|
template < typename Path, typename Graph >
|
|
inline void cycle(const Path& p, const Graph& g)
|
|
{
|
|
BOOST_USING_STD_MIN();
|
|
BOOST_USING_STD_MAX();
|
|
std::size_t len = p.size();
|
|
minimum = min BOOST_PREVENT_MACRO_SUBSTITUTION(minimum, len);
|
|
maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION(maximum, len);
|
|
}
|
|
std::size_t& minimum;
|
|
std::size_t& maximum;
|
|
};
|
|
|
|
inline min_max_cycle_visitor find_min_max_cycle(
|
|
std::size_t& min_, std::size_t& max_)
|
|
{
|
|
return min_max_cycle_visitor(min_, max_);
|
|
}
|
|
|
|
namespace detail
|
|
{
|
|
template < typename Graph, typename Path >
|
|
inline bool is_vertex_in_path(const Graph&,
|
|
typename graph_traits< Graph >::vertex_descriptor v, const Path& p)
|
|
{
|
|
return (std::find(p.begin(), p.end(), v) != p.end());
|
|
}
|
|
|
|
template < typename Graph, typename ClosedMatrix >
|
|
inline bool is_path_closed(const Graph& g,
|
|
typename graph_traits< Graph >::vertex_descriptor u,
|
|
typename graph_traits< Graph >::vertex_descriptor v,
|
|
const ClosedMatrix& closed)
|
|
{
|
|
// the path from u to v is closed if v can be found in the list
|
|
// of closed vertices associated with u.
|
|
typedef typename ClosedMatrix::const_reference Row;
|
|
Row r = closed[get(vertex_index, g, u)];
|
|
if (find(r.begin(), r.end(), v) != r.end())
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template < typename Graph, typename Path, typename ClosedMatrix >
|
|
inline bool can_extend_path(const Graph& g,
|
|
typename graph_traits< Graph >::edge_descriptor e, const Path& p,
|
|
const ClosedMatrix& m)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
|
|
BOOST_CONCEPT_ASSERT((VertexIndexGraphConcept< Graph >));
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
|
|
// get the vertices in question
|
|
Vertex u = source(e, g), v = target(e, g);
|
|
|
|
// conditions for allowing a traversal along this edge are:
|
|
// 1. the index of v must be greater than that at which the
|
|
// path is rooted (p.front()).
|
|
// 2. the vertex v cannot already be in the path
|
|
// 3. the vertex v cannot be closed to the vertex u
|
|
|
|
bool indices
|
|
= get(vertex_index, g, p.front()) < get(vertex_index, g, v);
|
|
bool path = !is_vertex_in_path(g, v, p);
|
|
bool closed = !is_path_closed(g, u, v, m);
|
|
return indices && path && closed;
|
|
}
|
|
|
|
template < typename Graph, typename Path >
|
|
inline bool can_wrap_path(const Graph& g, const Path& p)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
typedef typename graph_traits< Graph >::out_edge_iterator OutIterator;
|
|
|
|
// iterate over the out-edges of the back, looking for the
|
|
// front of the path. also, we can't travel along the same
|
|
// edge that we did on the way here, but we don't quite have the
|
|
// stringent requirements that we do in can_extend_path().
|
|
Vertex u = p.back(), v = p.front();
|
|
OutIterator i, end;
|
|
for (boost::tie(i, end) = out_edges(u, g); i != end; ++i)
|
|
{
|
|
if ((target(*i, g) == v))
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template < typename Graph, typename Path, typename ClosedMatrix >
|
|
inline typename graph_traits< Graph >::vertex_descriptor extend_path(
|
|
const Graph& g, Path& p, ClosedMatrix& closed)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
typedef typename graph_traits< Graph >::out_edge_iterator OutIterator;
|
|
|
|
// get the current vertex
|
|
Vertex u = p.back();
|
|
Vertex ret = graph_traits< Graph >::null_vertex();
|
|
|
|
// AdjacencyIterator i, end;
|
|
OutIterator i, end;
|
|
for (boost::tie(i, end) = out_edges(u, g); i != end; ++i)
|
|
{
|
|
Vertex v = target(*i, g);
|
|
|
|
// if we can actually extend along this edge,
|
|
// then that's what we want to do
|
|
if (can_extend_path(g, *i, p, closed))
|
|
{
|
|
p.push_back(v); // add the vertex to the path
|
|
ret = v;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
template < typename Graph, typename Path, typename ClosedMatrix >
|
|
inline bool exhaust_paths(const Graph& g, Path& p, ClosedMatrix& closed)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((GraphConcept< Graph >));
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
|
|
// if there's more than one vertex in the path, this closes
|
|
// of some possible routes and returns true. otherwise, if there's
|
|
// only one vertex left, the vertex has been used up
|
|
if (p.size() > 1)
|
|
{
|
|
// get the last and second to last vertices, popping the last
|
|
// vertex off the path
|
|
Vertex last, prev;
|
|
last = p.back();
|
|
p.pop_back();
|
|
prev = p.back();
|
|
|
|
// reset the closure for the last vertex of the path and
|
|
// indicate that the last vertex in p is now closed to
|
|
// the next-to-last vertex in p
|
|
closed[get(vertex_index, g, last)].clear();
|
|
closed[get(vertex_index, g, prev)].push_back(last);
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template < typename Graph, typename Visitor >
|
|
inline void all_cycles_from_vertex(const Graph& g,
|
|
typename graph_traits< Graph >::vertex_descriptor v, Visitor vis,
|
|
std::size_t minlen, std::size_t maxlen)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >));
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
typedef std::vector< Vertex > Path;
|
|
BOOST_CONCEPT_ASSERT((CycleVisitorConcept< Visitor, Path, Graph >));
|
|
typedef std::vector< Vertex > VertexList;
|
|
typedef std::vector< VertexList > ClosedMatrix;
|
|
|
|
Path p;
|
|
ClosedMatrix closed(num_vertices(g), VertexList());
|
|
Vertex null = graph_traits< Graph >::null_vertex();
|
|
|
|
// each path investigation starts at the ith vertex
|
|
p.push_back(v);
|
|
|
|
while (1)
|
|
{
|
|
// extend the path until we've reached the end or the
|
|
// maxlen-sized cycle
|
|
Vertex j = null;
|
|
while (((j = detail::extend_path(g, p, closed)) != null)
|
|
&& (p.size() < maxlen))
|
|
; // empty loop
|
|
|
|
// if we're done extending the path and there's an edge
|
|
// connecting the back to the front, then we should have
|
|
// a cycle.
|
|
if (detail::can_wrap_path(g, p) && p.size() >= minlen)
|
|
{
|
|
vis.cycle(p, g);
|
|
}
|
|
|
|
if (!detail::exhaust_paths(g, p, closed))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Select the minimum allowable length of a cycle based on the directedness
|
|
// of the graph - 2 for directed, 3 for undirected.
|
|
template < typename D > struct min_cycles
|
|
{
|
|
enum
|
|
{
|
|
value = 2
|
|
};
|
|
};
|
|
template <> struct min_cycles< undirected_tag >
|
|
{
|
|
enum
|
|
{
|
|
value = 3
|
|
};
|
|
};
|
|
} /* namespace detail */
|
|
|
|
template < typename Graph, typename Visitor >
|
|
inline void tiernan_all_cycles(
|
|
const Graph& g, Visitor vis, std::size_t minlen, std::size_t maxlen)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >));
|
|
typedef typename graph_traits< Graph >::vertex_iterator VertexIterator;
|
|
|
|
VertexIterator i, end;
|
|
for (boost::tie(i, end) = vertices(g); i != end; ++i)
|
|
{
|
|
detail::all_cycles_from_vertex(g, *i, vis, minlen, maxlen);
|
|
}
|
|
}
|
|
|
|
template < typename Graph, typename Visitor >
|
|
inline void tiernan_all_cycles(const Graph& g, Visitor vis, std::size_t maxlen)
|
|
{
|
|
typedef typename graph_traits< Graph >::directed_category Dir;
|
|
tiernan_all_cycles(g, vis, detail::min_cycles< Dir >::value, maxlen);
|
|
}
|
|
|
|
template < typename Graph, typename Visitor >
|
|
inline void tiernan_all_cycles(const Graph& g, Visitor vis)
|
|
{
|
|
typedef typename graph_traits< Graph >::directed_category Dir;
|
|
tiernan_all_cycles(g, vis, detail::min_cycles< Dir >::value,
|
|
(std::numeric_limits< std::size_t >::max)());
|
|
}
|
|
|
|
template < typename Graph >
|
|
inline std::pair< std::size_t, std::size_t > tiernan_girth_and_circumference(
|
|
const Graph& g)
|
|
{
|
|
std::size_t min_ = (std::numeric_limits< std::size_t >::max)(), max_ = 0;
|
|
tiernan_all_cycles(g, find_min_max_cycle(min_, max_));
|
|
|
|
// if this is the case, the graph is acyclic...
|
|
if (max_ == 0)
|
|
max_ = min_;
|
|
|
|
return std::make_pair(min_, max_);
|
|
}
|
|
|
|
template < typename Graph > inline std::size_t tiernan_girth(const Graph& g)
|
|
{
|
|
return tiernan_girth_and_circumference(g).first;
|
|
}
|
|
|
|
template < typename Graph >
|
|
inline std::size_t tiernan_circumference(const Graph& g)
|
|
{
|
|
return tiernan_girth_and_circumference(g).second;
|
|
}
|
|
|
|
} /* namespace boost */
|
|
|
|
#endif
|