libcarla/include/system/boost/graph/edge_connectivity.hpp
2024-10-18 13:19:59 +08:00

188 lines
6.6 KiB
C++

//=======================================================================
// Copyright 2000 University of Notre Dame.
// Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_EDGE_CONNECTIVITY
#define BOOST_EDGE_CONNECTIVITY
// WARNING: not-yet fully tested!
#include <boost/config.hpp>
#include <vector>
#include <set>
#include <algorithm>
#include <boost/graph/edmonds_karp_max_flow.hpp>
namespace boost
{
namespace detail
{
template < class Graph >
inline std::pair< typename graph_traits< Graph >::vertex_descriptor,
typename graph_traits< Graph >::degree_size_type >
min_degree_vertex(Graph& g)
{
typedef graph_traits< Graph > Traits;
typename Traits::vertex_descriptor p;
typedef typename Traits::degree_size_type size_type;
size_type delta = (std::numeric_limits< size_type >::max)();
typename Traits::vertex_iterator i, iend;
for (boost::tie(i, iend) = vertices(g); i != iend; ++i)
if (degree(*i, g) < delta)
{
delta = degree(*i, g);
p = *i;
}
return std::make_pair(p, delta);
}
template < class Graph, class OutputIterator >
void neighbors(const Graph& g,
typename graph_traits< Graph >::vertex_descriptor u,
OutputIterator result)
{
typename graph_traits< Graph >::adjacency_iterator ai, aend;
for (boost::tie(ai, aend) = adjacent_vertices(u, g); ai != aend; ++ai)
*result++ = *ai;
}
template < class Graph, class VertexIterator, class OutputIterator >
void neighbors(const Graph& g, VertexIterator first, VertexIterator last,
OutputIterator result)
{
for (; first != last; ++first)
neighbors(g, *first, result);
}
} // namespace detail
// O(m n)
template < class VertexListGraph, class OutputIterator >
typename graph_traits< VertexListGraph >::degree_size_type edge_connectivity(
VertexListGraph& g, OutputIterator disconnecting_set)
{
//-------------------------------------------------------------------------
// Type Definitions
typedef graph_traits< VertexListGraph > Traits;
typedef typename Traits::vertex_iterator vertex_iterator;
typedef typename Traits::edge_iterator edge_iterator;
typedef typename Traits::out_edge_iterator out_edge_iterator;
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::degree_size_type degree_size_type;
typedef color_traits< default_color_type > Color;
typedef adjacency_list_traits< vecS, vecS, directedS > Tr;
typedef typename Tr::edge_descriptor Tr_edge_desc;
typedef adjacency_list< vecS, vecS, directedS, no_property,
property< edge_capacity_t, degree_size_type,
property< edge_residual_capacity_t, degree_size_type,
property< edge_reverse_t, Tr_edge_desc > > > >
FlowGraph;
typedef typename graph_traits< FlowGraph >::edge_descriptor edge_descriptor;
//-------------------------------------------------------------------------
// Variable Declarations
vertex_descriptor u, v, p, k;
edge_descriptor e1, e2;
bool inserted;
vertex_iterator vi, vi_end;
edge_iterator ei, ei_end;
degree_size_type delta, alpha_star, alpha_S_k;
std::set< vertex_descriptor > S, neighbor_S;
std::vector< vertex_descriptor > S_star, non_neighbor_S;
std::vector< default_color_type > color(num_vertices(g));
std::vector< edge_descriptor > pred(num_vertices(g));
//-------------------------------------------------------------------------
// Create a network flow graph out of the undirected graph
FlowGraph flow_g(num_vertices(g));
typename property_map< FlowGraph, edge_capacity_t >::type cap
= get(edge_capacity, flow_g);
typename property_map< FlowGraph, edge_residual_capacity_t >::type res_cap
= get(edge_residual_capacity, flow_g);
typename property_map< FlowGraph, edge_reverse_t >::type rev_edge
= get(edge_reverse, flow_g);
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
{
u = source(*ei, g), v = target(*ei, g);
boost::tie(e1, inserted) = add_edge(u, v, flow_g);
cap[e1] = 1;
boost::tie(e2, inserted) = add_edge(v, u, flow_g);
cap[e2] = 1; // not sure about this
rev_edge[e1] = e2;
rev_edge[e2] = e1;
}
//-------------------------------------------------------------------------
// The Algorithm
boost::tie(p, delta) = detail::min_degree_vertex(g);
S_star.push_back(p);
alpha_star = delta;
S.insert(p);
neighbor_S.insert(p);
detail::neighbors(
g, S.begin(), S.end(), std::inserter(neighbor_S, neighbor_S.begin()));
boost::tie(vi, vi_end) = vertices(g);
std::set_difference(vi, vi_end, neighbor_S.begin(), neighbor_S.end(),
std::back_inserter(non_neighbor_S));
while (!non_neighbor_S.empty())
{ // at most n - 1 times
k = non_neighbor_S.front();
alpha_S_k = edmonds_karp_max_flow(
flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]);
if (alpha_S_k < alpha_star)
{
alpha_star = alpha_S_k;
S_star.clear();
for (boost::tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi)
if (color[*vi] != Color::white())
S_star.push_back(*vi);
}
S.insert(k);
neighbor_S.insert(k);
detail::neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin()));
non_neighbor_S.clear();
boost::tie(vi, vi_end) = vertices(g);
std::set_difference(vi, vi_end, neighbor_S.begin(), neighbor_S.end(),
std::back_inserter(non_neighbor_S));
}
//-------------------------------------------------------------------------
// Compute edges of the cut [S*, ~S*]
std::vector< bool > in_S_star(num_vertices(g), false);
typename std::vector< vertex_descriptor >::iterator si;
for (si = S_star.begin(); si != S_star.end(); ++si)
in_S_star[*si] = true;
degree_size_type c = 0;
for (si = S_star.begin(); si != S_star.end(); ++si)
{
out_edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei)
if (!in_S_star[target(*ei, g)])
{
*disconnecting_set++ = *ei;
++c;
}
}
return c;
}
} // namespace boost
#endif // BOOST_EDGE_CONNECTIVITY