484 lines
17 KiB
C++
484 lines
17 KiB
C++
//=======================================================================
|
|
// Copyright (C) 2005-2009 Jongsoo Park <jongsoo.park -at- gmail.com>
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//=======================================================================
|
|
|
|
#ifndef BOOST_GRAPH_DOMINATOR_HPP
|
|
#define BOOST_GRAPH_DOMINATOR_HPP
|
|
|
|
#include <boost/config.hpp>
|
|
#include <deque>
|
|
#include <set>
|
|
#include <boost/graph/depth_first_search.hpp>
|
|
#include <boost/concept/assert.hpp>
|
|
|
|
// Dominator tree computation
|
|
|
|
namespace boost
|
|
{
|
|
namespace detail
|
|
{
|
|
/**
|
|
* An extended time_stamper which also records vertices for each dfs number
|
|
*/
|
|
template < class TimeMap, class VertexVector, class TimeT, class Tag >
|
|
class time_stamper_with_vertex_vector
|
|
: public base_visitor<
|
|
time_stamper_with_vertex_vector< TimeMap, VertexVector, TimeT, Tag > >
|
|
{
|
|
public:
|
|
typedef Tag event_filter;
|
|
time_stamper_with_vertex_vector(
|
|
TimeMap timeMap, VertexVector& v, TimeT& t)
|
|
: timeStamper_(timeMap, t), v_(v)
|
|
{
|
|
}
|
|
|
|
template < class Graph >
|
|
void operator()(const typename property_traits< TimeMap >::key_type& v,
|
|
const Graph& g)
|
|
{
|
|
timeStamper_(v, g);
|
|
v_[timeStamper_.m_time] = v;
|
|
}
|
|
|
|
private:
|
|
time_stamper< TimeMap, TimeT, Tag > timeStamper_;
|
|
VertexVector& v_;
|
|
};
|
|
|
|
/**
|
|
* A convenient way to create a time_stamper_with_vertex_vector
|
|
*/
|
|
template < class TimeMap, class VertexVector, class TimeT, class Tag >
|
|
time_stamper_with_vertex_vector< TimeMap, VertexVector, TimeT, Tag >
|
|
stamp_times_with_vertex_vector(
|
|
TimeMap timeMap, VertexVector& v, TimeT& t, Tag)
|
|
{
|
|
return time_stamper_with_vertex_vector< TimeMap, VertexVector, TimeT,
|
|
Tag >(timeMap, v, t);
|
|
}
|
|
|
|
template < class Graph, class IndexMap, class TimeMap, class PredMap,
|
|
class DomTreePredMap >
|
|
class dominator_visitor
|
|
{
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
typedef
|
|
typename graph_traits< Graph >::vertices_size_type VerticesSizeType;
|
|
|
|
public:
|
|
/**
|
|
* @param g [in] the target graph of the dominator tree
|
|
* @param entry [in] the entry node of g
|
|
* @param indexMap [in] the vertex index map for g
|
|
* @param domTreePredMap [out] the immediate dominator map
|
|
* (parent map in dominator tree)
|
|
*/
|
|
dominator_visitor(const Graph& g, const Vertex& entry,
|
|
const IndexMap& indexMap, DomTreePredMap domTreePredMap)
|
|
: semi_(num_vertices(g))
|
|
, ancestor_(num_vertices(g), graph_traits< Graph >::null_vertex())
|
|
, samedom_(ancestor_)
|
|
, best_(semi_)
|
|
, semiMap_(make_iterator_property_map(semi_.begin(), indexMap))
|
|
, ancestorMap_(make_iterator_property_map(ancestor_.begin(), indexMap))
|
|
, bestMap_(make_iterator_property_map(best_.begin(), indexMap))
|
|
, buckets_(num_vertices(g))
|
|
, bucketMap_(make_iterator_property_map(buckets_.begin(), indexMap))
|
|
, entry_(entry)
|
|
, domTreePredMap_(domTreePredMap)
|
|
, numOfVertices_(num_vertices(g))
|
|
, samedomMap(make_iterator_property_map(samedom_.begin(), indexMap))
|
|
{
|
|
}
|
|
|
|
void operator()(const Vertex& n, const TimeMap& dfnumMap,
|
|
const PredMap& parentMap, const Graph& g)
|
|
{
|
|
if (n == entry_)
|
|
return;
|
|
|
|
const Vertex p(get(parentMap, n));
|
|
Vertex s(p);
|
|
|
|
// 1. Calculate the semidominator of n,
|
|
// based on the semidominator thm.
|
|
// * Semidominator thm. : To find the semidominator of a node n,
|
|
// consider all predecessors v of n in the CFG (Control Flow
|
|
// Graph).
|
|
// - If v is a proper ancestor of n in the spanning tree
|
|
// (so dfnum(v) < dfnum(n)), then v is a candidate for semi(n)
|
|
// - If v is a non-ancestor of n (so dfnum(v) > dfnum(n))
|
|
// then for each u that is an ancestor of v (or u = v),
|
|
// Let semi(u) be a candidate for semi(n)
|
|
// of all these candidates, the one with lowest dfnum is
|
|
// the semidominator of n.
|
|
|
|
// For each predecessor of n
|
|
typename graph_traits< Graph >::in_edge_iterator inItr, inEnd;
|
|
for (boost::tie(inItr, inEnd) = in_edges(n, g); inItr != inEnd;
|
|
++inItr)
|
|
{
|
|
const Vertex v = source(*inItr, g);
|
|
// To deal with unreachable nodes
|
|
if (get(dfnumMap, v) < 0 || get(dfnumMap, v) >= numOfVertices_)
|
|
continue;
|
|
|
|
Vertex s2;
|
|
if (get(dfnumMap, v) <= get(dfnumMap, n))
|
|
s2 = v;
|
|
else
|
|
s2 = get(semiMap_, ancestor_with_lowest_semi_(v, dfnumMap));
|
|
|
|
if (get(dfnumMap, s2) < get(dfnumMap, s))
|
|
s = s2;
|
|
}
|
|
put(semiMap_, n, s);
|
|
|
|
// 2. Calculation of n's dominator is deferred until
|
|
// the path from s to n has been linked into the forest
|
|
get(bucketMap_, s).push_back(n);
|
|
get(ancestorMap_, n) = p;
|
|
get(bestMap_, n) = n;
|
|
|
|
// 3. Now that the path from p to v has been linked into
|
|
// the spanning forest, these lines calculate the dominator of v,
|
|
// based on the dominator thm., or else defer the calculation
|
|
// until y's dominator is known
|
|
// * Dominator thm. : On the spanning-tree path below semi(n) and
|
|
// above or including n, let y be the node
|
|
// with the smallest-numbered semidominator. Then,
|
|
//
|
|
// idom(n) = semi(n) if semi(y)=semi(n) or
|
|
// idom(y) if semi(y) != semi(n)
|
|
typename std::deque< Vertex >::iterator buckItr;
|
|
for (buckItr = get(bucketMap_, p).begin();
|
|
buckItr != get(bucketMap_, p).end(); ++buckItr)
|
|
{
|
|
const Vertex v(*buckItr);
|
|
const Vertex y(ancestor_with_lowest_semi_(v, dfnumMap));
|
|
if (get(semiMap_, y) == get(semiMap_, v))
|
|
put(domTreePredMap_, v, p);
|
|
else
|
|
put(samedomMap, v, y);
|
|
}
|
|
|
|
get(bucketMap_, p).clear();
|
|
}
|
|
|
|
protected:
|
|
/**
|
|
* Evaluate function in Tarjan's path compression
|
|
*/
|
|
const Vertex ancestor_with_lowest_semi_(
|
|
const Vertex& v, const TimeMap& dfnumMap)
|
|
{
|
|
const Vertex a(get(ancestorMap_, v));
|
|
|
|
if (get(ancestorMap_, a) != graph_traits< Graph >::null_vertex())
|
|
{
|
|
const Vertex b(ancestor_with_lowest_semi_(a, dfnumMap));
|
|
|
|
put(ancestorMap_, v, get(ancestorMap_, a));
|
|
|
|
if (get(dfnumMap, get(semiMap_, b))
|
|
< get(dfnumMap, get(semiMap_, get(bestMap_, v))))
|
|
put(bestMap_, v, b);
|
|
}
|
|
|
|
return get(bestMap_, v);
|
|
}
|
|
|
|
std::vector< Vertex > semi_, ancestor_, samedom_, best_;
|
|
PredMap semiMap_, ancestorMap_, bestMap_;
|
|
std::vector< std::deque< Vertex > > buckets_;
|
|
|
|
iterator_property_map<
|
|
typename std::vector< std::deque< Vertex > >::iterator, IndexMap >
|
|
bucketMap_;
|
|
|
|
const Vertex& entry_;
|
|
DomTreePredMap domTreePredMap_;
|
|
const VerticesSizeType numOfVertices_;
|
|
|
|
public:
|
|
PredMap samedomMap;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
/**
|
|
* @brief Build dominator tree using Lengauer-Tarjan algorithm.
|
|
* It takes O((V+E)log(V+E)) time.
|
|
*
|
|
* @pre dfnumMap, parentMap and verticesByDFNum have dfs results corresponding
|
|
* indexMap.
|
|
* If dfs has already run before,
|
|
* this function would be good for saving computations.
|
|
* @pre Unreachable nodes must be masked as
|
|
* graph_traits<Graph>::null_vertex in parentMap.
|
|
* @pre Unreachable nodes must be masked as
|
|
* (std::numeric_limits<VerticesSizeType>::max)() in dfnumMap.
|
|
*
|
|
* @param domTreePredMap [out] : immediate dominator map (parent map
|
|
* in dom. tree)
|
|
*
|
|
* @note reference Appel. p. 452~453. algorithm 19.9, 19.10.
|
|
*
|
|
* @todo : Optimization in Finding Dominators in Practice, Loukas Georgiadis
|
|
*/
|
|
template < class Graph, class IndexMap, class TimeMap, class PredMap,
|
|
class VertexVector, class DomTreePredMap >
|
|
void lengauer_tarjan_dominator_tree_without_dfs(const Graph& g,
|
|
const typename graph_traits< Graph >::vertex_descriptor& entry,
|
|
const IndexMap& indexMap, TimeMap dfnumMap, PredMap parentMap,
|
|
VertexVector& verticesByDFNum, DomTreePredMap domTreePredMap)
|
|
{
|
|
// Typedefs and concept check
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
typedef typename graph_traits< Graph >::vertices_size_type VerticesSizeType;
|
|
|
|
BOOST_CONCEPT_ASSERT((BidirectionalGraphConcept< Graph >));
|
|
|
|
const VerticesSizeType numOfVertices = num_vertices(g);
|
|
if (numOfVertices == 0)
|
|
return;
|
|
|
|
// 1. Visit each vertex in reverse post order and calculate sdom.
|
|
detail::dominator_visitor< Graph, IndexMap, TimeMap, PredMap,
|
|
DomTreePredMap >
|
|
visitor(g, entry, indexMap, domTreePredMap);
|
|
|
|
VerticesSizeType i;
|
|
for (i = 0; i < numOfVertices; ++i)
|
|
{
|
|
const Vertex u(verticesByDFNum[numOfVertices - 1 - i]);
|
|
if (u != graph_traits< Graph >::null_vertex())
|
|
visitor(u, dfnumMap, parentMap, g);
|
|
}
|
|
|
|
// 2. Now all the deferred dominator calculations,
|
|
// based on the second clause of the dominator thm., are performed
|
|
for (i = 0; i < numOfVertices; ++i)
|
|
{
|
|
const Vertex n(verticesByDFNum[i]);
|
|
|
|
if (n == entry || n == graph_traits< Graph >::null_vertex())
|
|
continue;
|
|
|
|
Vertex u = get(visitor.samedomMap, n);
|
|
if (u != graph_traits< Graph >::null_vertex())
|
|
{
|
|
put(domTreePredMap, n, get(domTreePredMap, u));
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Unlike lengauer_tarjan_dominator_tree_without_dfs,
|
|
* dfs is run in this function and
|
|
* the result is written to dfnumMap, parentMap, vertices.
|
|
*
|
|
* If the result of dfs required after this algorithm,
|
|
* this function can eliminate the need of rerunning dfs.
|
|
*/
|
|
template < class Graph, class IndexMap, class TimeMap, class PredMap,
|
|
class VertexVector, class DomTreePredMap >
|
|
void lengauer_tarjan_dominator_tree(const Graph& g,
|
|
const typename graph_traits< Graph >::vertex_descriptor& entry,
|
|
const IndexMap& indexMap, TimeMap dfnumMap, PredMap parentMap,
|
|
VertexVector& verticesByDFNum, DomTreePredMap domTreePredMap)
|
|
{
|
|
// Typedefs and concept check
|
|
typedef typename graph_traits< Graph >::vertices_size_type VerticesSizeType;
|
|
|
|
BOOST_CONCEPT_ASSERT((BidirectionalGraphConcept< Graph >));
|
|
|
|
// 1. Depth first visit
|
|
const VerticesSizeType numOfVertices = num_vertices(g);
|
|
if (numOfVertices == 0)
|
|
return;
|
|
|
|
VerticesSizeType time = (std::numeric_limits< VerticesSizeType >::max)();
|
|
std::vector< default_color_type > colors(
|
|
numOfVertices, color_traits< default_color_type >::white());
|
|
depth_first_visit(g, entry,
|
|
make_dfs_visitor(
|
|
make_pair(record_predecessors(parentMap, on_tree_edge()),
|
|
detail::stamp_times_with_vertex_vector(
|
|
dfnumMap, verticesByDFNum, time, on_discover_vertex()))),
|
|
make_iterator_property_map(colors.begin(), indexMap));
|
|
|
|
// 2. Run main algorithm.
|
|
lengauer_tarjan_dominator_tree_without_dfs(g, entry, indexMap, dfnumMap,
|
|
parentMap, verticesByDFNum, domTreePredMap);
|
|
}
|
|
|
|
/**
|
|
* Use vertex_index as IndexMap and make dfnumMap, parentMap, verticesByDFNum
|
|
* internally.
|
|
* If we don't need the result of dfs (dfnumMap, parentMap, verticesByDFNum),
|
|
* this function would be more convenient one.
|
|
*/
|
|
template < class Graph, class DomTreePredMap >
|
|
void lengauer_tarjan_dominator_tree(const Graph& g,
|
|
const typename graph_traits< Graph >::vertex_descriptor& entry,
|
|
DomTreePredMap domTreePredMap)
|
|
{
|
|
// typedefs
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
typedef typename graph_traits< Graph >::vertices_size_type VerticesSizeType;
|
|
typedef typename property_map< Graph, vertex_index_t >::const_type IndexMap;
|
|
typedef iterator_property_map<
|
|
typename std::vector< VerticesSizeType >::iterator, IndexMap >
|
|
TimeMap;
|
|
typedef iterator_property_map< typename std::vector< Vertex >::iterator,
|
|
IndexMap >
|
|
PredMap;
|
|
|
|
// Make property maps
|
|
const VerticesSizeType numOfVertices = num_vertices(g);
|
|
if (numOfVertices == 0)
|
|
return;
|
|
|
|
const IndexMap indexMap = get(vertex_index, g);
|
|
|
|
std::vector< VerticesSizeType > dfnum(numOfVertices, 0);
|
|
TimeMap dfnumMap(make_iterator_property_map(dfnum.begin(), indexMap));
|
|
|
|
std::vector< Vertex > parent(
|
|
numOfVertices, graph_traits< Graph >::null_vertex());
|
|
PredMap parentMap(make_iterator_property_map(parent.begin(), indexMap));
|
|
|
|
std::vector< Vertex > verticesByDFNum(parent);
|
|
|
|
// Run main algorithm
|
|
lengauer_tarjan_dominator_tree(g, entry, indexMap, dfnumMap, parentMap,
|
|
verticesByDFNum, domTreePredMap);
|
|
}
|
|
|
|
/**
|
|
* Muchnick. p. 182, 184
|
|
*
|
|
* using iterative bit vector analysis
|
|
*/
|
|
template < class Graph, class IndexMap, class DomTreePredMap >
|
|
void iterative_bit_vector_dominator_tree(const Graph& g,
|
|
const typename graph_traits< Graph >::vertex_descriptor& entry,
|
|
const IndexMap& indexMap, DomTreePredMap domTreePredMap)
|
|
{
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
typedef typename graph_traits< Graph >::vertex_iterator vertexItr;
|
|
typedef typename graph_traits< Graph >::vertices_size_type VerticesSizeType;
|
|
typedef iterator_property_map<
|
|
typename std::vector< std::set< Vertex > >::iterator, IndexMap >
|
|
vertexSetMap;
|
|
|
|
BOOST_CONCEPT_ASSERT((BidirectionalGraphConcept< Graph >));
|
|
|
|
// 1. Finding dominator
|
|
// 1.1. Initialize
|
|
const VerticesSizeType numOfVertices = num_vertices(g);
|
|
if (numOfVertices == 0)
|
|
return;
|
|
|
|
vertexItr vi, viend;
|
|
boost::tie(vi, viend) = vertices(g);
|
|
const std::set< Vertex > N(vi, viend);
|
|
|
|
bool change = true;
|
|
|
|
std::vector< std::set< Vertex > > dom(numOfVertices, N);
|
|
vertexSetMap domMap(make_iterator_property_map(dom.begin(), indexMap));
|
|
get(domMap, entry).clear();
|
|
get(domMap, entry).insert(entry);
|
|
|
|
while (change)
|
|
{
|
|
change = false;
|
|
for (boost::tie(vi, viend) = vertices(g); vi != viend; ++vi)
|
|
{
|
|
if (*vi == entry)
|
|
continue;
|
|
|
|
std::set< Vertex > T(N);
|
|
|
|
typename graph_traits< Graph >::in_edge_iterator inItr, inEnd;
|
|
for (boost::tie(inItr, inEnd) = in_edges(*vi, g); inItr != inEnd;
|
|
++inItr)
|
|
{
|
|
const Vertex p = source(*inItr, g);
|
|
|
|
std::set< Vertex > tempSet;
|
|
std::set_intersection(T.begin(), T.end(),
|
|
get(domMap, p).begin(), get(domMap, p).end(),
|
|
std::inserter(tempSet, tempSet.begin()));
|
|
T.swap(tempSet);
|
|
}
|
|
|
|
T.insert(*vi);
|
|
if (T != get(domMap, *vi))
|
|
{
|
|
change = true;
|
|
get(domMap, *vi).swap(T);
|
|
}
|
|
} // end of for (boost::tie(vi, viend) = vertices(g)
|
|
} // end of while(change)
|
|
|
|
// 2. Build dominator tree
|
|
for (boost::tie(vi, viend) = vertices(g); vi != viend; ++vi)
|
|
get(domMap, *vi).erase(*vi);
|
|
|
|
Graph domTree(numOfVertices);
|
|
|
|
for (boost::tie(vi, viend) = vertices(g); vi != viend; ++vi)
|
|
{
|
|
if (*vi == entry)
|
|
continue;
|
|
|
|
// We have to iterate through copied dominator set
|
|
const std::set< Vertex > tempSet(get(domMap, *vi));
|
|
typename std::set< Vertex >::const_iterator s;
|
|
for (s = tempSet.begin(); s != tempSet.end(); ++s)
|
|
{
|
|
typename std::set< Vertex >::iterator t;
|
|
for (t = get(domMap, *vi).begin(); t != get(domMap, *vi).end();)
|
|
{
|
|
typename std::set< Vertex >::iterator old_t = t;
|
|
++t; // Done early because t may become invalid
|
|
if (*old_t == *s)
|
|
continue;
|
|
if (get(domMap, *s).find(*old_t) != get(domMap, *s).end())
|
|
get(domMap, *vi).erase(old_t);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (boost::tie(vi, viend) = vertices(g); vi != viend; ++vi)
|
|
{
|
|
if (*vi != entry && get(domMap, *vi).size() == 1)
|
|
{
|
|
Vertex temp = *get(domMap, *vi).begin();
|
|
put(domTreePredMap, *vi, temp);
|
|
}
|
|
}
|
|
}
|
|
|
|
template < class Graph, class DomTreePredMap >
|
|
void iterative_bit_vector_dominator_tree(const Graph& g,
|
|
const typename graph_traits< Graph >::vertex_descriptor& entry,
|
|
DomTreePredMap domTreePredMap)
|
|
{
|
|
typename property_map< Graph, vertex_index_t >::const_type indexMap
|
|
= get(vertex_index, g);
|
|
|
|
iterative_bit_vector_dominator_tree(g, entry, indexMap, domTreePredMap);
|
|
}
|
|
} // namespace boost
|
|
|
|
#endif // BOOST_GRAPH_DOMINATOR_HPP
|