libcarla/include/system/boost/geometry/util/precise_math.hpp
2024-10-18 13:19:59 +08:00

632 lines
23 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2019 Tinko Bartels, Berlin, Germany.
// Contributed and/or modified by Tinko Bartels,
// as part of Google Summer of Code 2019 program.
// This file was modified by Oracle on 2021.
// Modifications copyright (c) 2021, Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fisikopoulos, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_EXTENSIONS_TRIANGULATION_STRATEGIES_CARTESIAN_DETAIL_PRECISE_MATH_HPP
#define BOOST_GEOMETRY_EXTENSIONS_TRIANGULATION_STRATEGIES_CARTESIAN_DETAIL_PRECISE_MATH_HPP
#include<numeric>
#include<cmath>
#include<limits>
#include<array>
#include <boost/geometry/core/access.hpp>
// The following code is based on "Adaptive Precision Floating-Point Arithmetic
// and Fast Robust Geometric Predicates" by Richard Shewchuk,
// J. Discrete Comput Geom (1997) 18: 305. https://doi.org/10.1007/PL00009321
namespace boost { namespace geometry
{
namespace detail { namespace precise_math
{
// See Theorem 6, page 6
template
<
typename RealNumber
>
inline std::array<RealNumber, 2> fast_two_sum(RealNumber const a,
RealNumber const b)
{
RealNumber x = a + b;
RealNumber b_virtual = x - a;
return {{x, b - b_virtual}};
}
// See Theorem 7, page 7 - 8
template
<
typename RealNumber
>
inline std::array<RealNumber, 2> two_sum(RealNumber const a,
RealNumber const b)
{
RealNumber x = a + b;
RealNumber b_virtual = x - a;
RealNumber a_virtual = x - b_virtual;
RealNumber b_roundoff = b - b_virtual;
RealNumber a_roundoff = a - a_virtual;
RealNumber y = a_roundoff + b_roundoff;
return {{ x, y }};
}
// See bottom of page 8
template
<
typename RealNumber
>
inline RealNumber two_diff_tail(RealNumber const a,
RealNumber const b,
RealNumber const x)
{
RealNumber b_virtual = a - x;
RealNumber a_virtual = x + b_virtual;
RealNumber b_roundoff = b_virtual - b;
RealNumber a_roundoff = a - a_virtual;
return a_roundoff + b_roundoff;
}
// see bottom of page 8
template
<
typename RealNumber
>
inline std::array<RealNumber, 2> two_diff(RealNumber const a,
RealNumber const b)
{
RealNumber x = a - b;
RealNumber y = two_diff_tail(a, b, x);
return {{ x, y }};
}
// see theorem 18, page 19
template
<
typename RealNumber
>
inline RealNumber two_product_tail(RealNumber const a,
RealNumber const b,
RealNumber const x)
{
return std::fma(a, b, -x);
}
// see theorem 18, page 19
template
<
typename RealNumber
>
inline std::array<RealNumber, 2> two_product(RealNumber const a,
RealNumber const b)
{
RealNumber x = a * b;
RealNumber y = two_product_tail(a, b, x);
return {{ x , y }};
}
// see theorem 12, figure 7, page 11 - 12,
// this is the 2 by 2 case for the corresponding diff-method
// note that this method takes input in descending order of magnitude and
// returns components in ascending order of magnitude
template
<
typename RealNumber
>
inline std::array<RealNumber, 4> two_two_expansion_diff(
std::array<RealNumber, 2> const a,
std::array<RealNumber, 2> const b)
{
std::array<RealNumber, 4> h;
std::array<RealNumber, 2> Qh = two_diff(a[1], b[1]);
h[0] = Qh[1];
Qh = two_sum( a[0], Qh[0] );
RealNumber _j = Qh[0];
Qh = two_diff(Qh[1], b[0]);
h[1] = Qh[1];
Qh = two_sum( _j, Qh[0] );
h[2] = Qh[1];
h[3] = Qh[0];
return h;
}
// see theorem 13, figure 8. This implementation uses zero elimination as
// suggested on page 17, second to last paragraph. Returns the number of
// non-zero components in the result and writes the result to h.
// the merger into a single sequence g is done implicitly
template
<
typename RealNumber,
std::size_t InSize1,
std::size_t InSize2,
std::size_t OutSize
>
inline int fast_expansion_sum_zeroelim(
std::array<RealNumber, InSize1> const& e,
std::array<RealNumber, InSize2> const& f,
std::array<RealNumber, OutSize> & h,
int m = InSize1,
int n = InSize2)
{
std::array<RealNumber, 2> Qh;
int i_e = 0;
int i_f = 0;
int i_h = 0;
if (std::abs(f[0]) > std::abs(e[0]))
{
Qh[0] = e[i_e++];
}
else
{
Qh[0] = f[i_f++];
}
i_h = 0;
if ((i_e < m) && (i_f < n))
{
if (std::abs(f[i_f]) > std::abs(e[i_e]))
{
Qh = fast_two_sum(e[i_e++], Qh[0]);
}
else
{
Qh = fast_two_sum(f[i_f++], Qh[0]);
}
if (Qh[1] != 0.0)
{
h[i_h++] = Qh[1];
}
while ((i_e < m) && (i_f < n))
{
if (std::abs(f[i_f]) > std::abs(e[i_e]))
{
Qh = two_sum(Qh[0], e[i_e++]);
}
else
{
Qh = two_sum(Qh[0], f[i_f++]);
}
if (Qh[1] != 0.0)
{
h[i_h++] = Qh[1];
}
}
}
while (i_e < m)
{
Qh = two_sum(Qh[0], e[i_e++]);
if (Qh[1] != 0.0)
{
h[i_h++] = Qh[1];
}
}
while (i_f < n)
{
Qh = two_sum(Qh[0], f[i_f++]);
if (Qh[1] != 0.0)
{
h[i_h++] = Qh[1];
}
}
if ((Qh[0] != 0.0) || (i_h == 0))
{
h[i_h++] = Qh[0];
}
return i_h;
}
// see theorem 19, figure 13, page 20 - 21. This implementation uses zero
// elimination as suggested on page 17, second to last paragraph. Returns the
// number of non-zero components in the result and writes the result to h.
template
<
typename RealNumber,
std::size_t InSize
>
inline int scale_expansion_zeroelim(
std::array<RealNumber, InSize> const& e,
RealNumber const b,
std::array<RealNumber, 2 * InSize> & h,
int e_non_zeros = InSize)
{
std::array<RealNumber, 2> Qh = two_product(e[0], b);
int i_h = 0;
if (Qh[1] != 0)
{
h[i_h++] = Qh[1];
}
for (int i_e = 1; i_e < e_non_zeros; i_e++)
{
std::array<RealNumber, 2> Tt = two_product(e[i_e], b);
Qh = two_sum(Qh[0], Tt[1]);
if (Qh[1] != 0)
{
h[i_h++] = Qh[1];
}
Qh = fast_two_sum(Tt[0], Qh[0]);
if (Qh[1] != 0)
{
h[i_h++] = Qh[1];
}
}
if ((Qh[0] != 0.0) || (i_h == 0))
{
h[i_h++] = Qh[0];
}
return i_h;
}
template<typename RealNumber>
struct vec2d
{
RealNumber x;
RealNumber y;
};
template
<
typename RealNumber,
std::size_t Robustness
>
inline RealNumber orient2dtail(vec2d<RealNumber> const& p1,
vec2d<RealNumber> const& p2,
vec2d<RealNumber> const& p3,
std::array<RealNumber, 2>& t1,
std::array<RealNumber, 2>& t2,
std::array<RealNumber, 2>& t3,
std::array<RealNumber, 2>& t4,
std::array<RealNumber, 2>& t5_01,
std::array<RealNumber, 2>& t6_01,
RealNumber const& magnitude)
{
t5_01[1] = two_product_tail(t1[0], t2[0], t5_01[0]);
t6_01[1] = two_product_tail(t3[0], t4[0], t6_01[0]);
std::array<RealNumber, 4> tA_03 = two_two_expansion_diff(t5_01, t6_01);
RealNumber det = std::accumulate(tA_03.begin(), tA_03.end(), static_cast<RealNumber>(0));
if (Robustness == 1)
{
return det;
}
// see p.39, mind the different definition of epsilon for error bound
RealNumber B_relative_bound =
(1 + 3 * std::numeric_limits<RealNumber>::epsilon())
* std::numeric_limits<RealNumber>::epsilon();
RealNumber absolute_bound = B_relative_bound * magnitude;
if (std::abs(det) >= absolute_bound)
{
return det; //B estimate
}
t1[1] = two_diff_tail(p1.x, p3.x, t1[0]);
t2[1] = two_diff_tail(p2.y, p3.y, t2[0]);
t3[1] = two_diff_tail(p1.y, p3.y, t3[0]);
t4[1] = two_diff_tail(p2.x, p3.x, t4[0]);
if ((t1[1] == 0) && (t3[1] == 0) && (t2[1] == 0) && (t4[1] == 0))
{
return det; //If all tails are zero, there is noething else to compute
}
RealNumber sub_bound =
(1.5 + 2 * std::numeric_limits<RealNumber>::epsilon())
* std::numeric_limits<RealNumber>::epsilon();
// see p.39, mind the different definition of epsilon for error bound
RealNumber C_relative_bound =
(2.25 + 8 * std::numeric_limits<RealNumber>::epsilon())
* std::numeric_limits<RealNumber>::epsilon()
* std::numeric_limits<RealNumber>::epsilon();
absolute_bound = C_relative_bound * magnitude + sub_bound * std::abs(det);
det += (t1[0] * t2[1] + t2[0] * t1[1]) - (t3[0] * t4[1] + t4[0] * t3[1]);
if (Robustness == 2 || std::abs(det) >= absolute_bound)
{
return det; //C estimate
}
std::array<RealNumber, 8> D_left;
int D_left_nz;
{
std::array<RealNumber, 2> t5_23 = two_product(t1[1], t2[0]);
std::array<RealNumber, 2> t6_23 = two_product(t3[1], t4[0]);
std::array<RealNumber, 4> tA_47 = two_two_expansion_diff(t5_23, t6_23);
D_left_nz = fast_expansion_sum_zeroelim(tA_03, tA_47, D_left);
}
std::array<RealNumber, 8> D_right;
int D_right_nz;
{
std::array<RealNumber, 2> t5_45 = two_product(t1[0], t2[1]);
std::array<RealNumber, 2> t6_45 = two_product(t3[0], t4[1]);
std::array<RealNumber, 4> tA_8_11 = two_two_expansion_diff(t5_45, t6_45);
std::array<RealNumber, 2> t5_67 = two_product(t1[1], t2[1]);
std::array<RealNumber, 2> t6_67 = two_product(t3[1], t4[1]);
std::array<RealNumber, 4> tA_12_15 = two_two_expansion_diff(t5_67, t6_67);
D_right_nz = fast_expansion_sum_zeroelim(tA_8_11, tA_12_15, D_right);
}
std::array<RealNumber, 16> D;
int D_nz = fast_expansion_sum_zeroelim(D_left, D_right, D, D_left_nz, D_right_nz);
// only return component of highest magnitude because we mostly care about the sign.
return(D[D_nz - 1]);
}
// see page 38, Figure 21 for the calculations, notation follows the notation
// in the figure.
template
<
typename RealNumber,
std::size_t Robustness = 3,
typename EpsPolicy
>
inline RealNumber orient2d(vec2d<RealNumber> const& p1,
vec2d<RealNumber> const& p2,
vec2d<RealNumber> const& p3,
EpsPolicy& eps_policy)
{
std::array<RealNumber, 2> t1, t2, t3, t4;
t1[0] = p1.x - p3.x;
t2[0] = p2.y - p3.y;
t3[0] = p1.y - p3.y;
t4[0] = p2.x - p3.x;
eps_policy = EpsPolicy(t1[0], t2[0], t3[0], t4[0]);
std::array<RealNumber, 2> t5_01, t6_01;
t5_01[0] = t1[0] * t2[0];
t6_01[0] = t3[0] * t4[0];
RealNumber det = t5_01[0] - t6_01[0];
if (Robustness == 0)
{
return det;
}
RealNumber const magnitude = std::abs(t5_01[0]) + std::abs(t6_01[0]);
// see p.39, mind the different definition of epsilon for error bound
RealNumber const A_relative_bound =
(1.5 + 4 * std::numeric_limits<RealNumber>::epsilon())
* std::numeric_limits<RealNumber>::epsilon();
RealNumber absolute_bound = A_relative_bound * magnitude;
if ( std::abs(det) >= absolute_bound )
{
return det; //A estimate
}
if ( (t5_01[0] > 0 && t6_01[0] <= 0) || (t5_01[0] < 0 && t6_01[0] >= 0) )
{
//if diagonal and antidiagonal have different sign, the sign of det is
//obvious
return det;
}
return orient2dtail<RealNumber, Robustness>(p1, p2, p3, t1, t2, t3, t4,
t5_01, t6_01, magnitude);
}
// This method adaptively computes increasingly precise approximations of the following
// determinant using Laplace expansion along the last column.
// det A =
// | p1_x - p4_x p1_y - p4_y ( p1_x - p4_x ) ^ 2 + ( p1_y - p4_y ) ^ 2 |
// | p2_x - p4_x p2_y - p4_y ( p2_x - p4_x ) ^ 2 + ( p1_y - p4_y ) ^ 2 |
// | p3_x - p4_x p3_y - p4_y ( p3_x - p4_x ) ^ 2 + ( p3_y - p4_y ) ^ 2 |
// = a_13 * C_13 + a_23 * C_23 + a_33 * C_33
// where a_ij is the i-j-entry and C_ij is the i_j Cofactor
template
<
typename RealNumber,
std::size_t Robustness = 2
>
RealNumber incircle(std::array<RealNumber, 2> const& p1,
std::array<RealNumber, 2> const& p2,
std::array<RealNumber, 2> const& p3,
std::array<RealNumber, 2> const& p4)
{
RealNumber A_11 = p1[0] - p4[0];
RealNumber A_21 = p2[0] - p4[0];
RealNumber A_31 = p3[0] - p4[0];
RealNumber A_12 = p1[1] - p4[1];
RealNumber A_22 = p2[1] - p4[1];
RealNumber A_32 = p3[1] - p4[1];
std::array<RealNumber, 2> A_21_x_A_32,
A_31_x_A_22,
A_31_x_A_12,
A_11_x_A_32,
A_11_x_A_22,
A_21_x_A_12;
A_21_x_A_32[0] = A_21 * A_32;
A_31_x_A_22[0] = A_31 * A_22;
RealNumber A_13 = A_11 * A_11 + A_12 * A_12;
A_31_x_A_12[0] = A_31 * A_12;
A_11_x_A_32[0] = A_11 * A_32;
RealNumber A_23 = A_21 * A_21 + A_22 * A_22;
A_11_x_A_22[0] = A_11 * A_22;
A_21_x_A_12[0] = A_21 * A_12;
RealNumber A_33 = A_31 * A_31 + A_32 * A_32;
RealNumber det = A_13 * (A_21_x_A_32[0] - A_31_x_A_22[0])
+ A_23 * (A_31_x_A_12[0] - A_11_x_A_32[0])
+ A_33 * (A_11_x_A_22[0] - A_21_x_A_12[0]);
if(Robustness == 0) return det;
RealNumber magnitude =
(std::abs(A_21_x_A_32[0]) + std::abs(A_31_x_A_22[0])) * A_13
+ (std::abs(A_31_x_A_12[0]) + std::abs(A_11_x_A_32[0])) * A_23
+ (std::abs(A_11_x_A_22[0]) + std::abs(A_21_x_A_12[0])) * A_33;
RealNumber A_relative_bound =
(5 + 24 * std::numeric_limits<RealNumber>::epsilon())
* std::numeric_limits<RealNumber>::epsilon();
RealNumber absolute_bound = A_relative_bound * magnitude;
if (std::abs(det) > absolute_bound)
{
return det;
}
// (p2_x - p4_x) * (p3_y - p4_y)
A_21_x_A_32[1] = two_product_tail(A_21, A_32, A_21_x_A_32[0]);
// (p3_x - p4_x) * (p2_y - p4_y)
A_31_x_A_22[1] = two_product_tail(A_31, A_22, A_31_x_A_22[0]);
// (bx - dx) * (cy - dy) - (cx - dx) * (by - dy)
std::array<RealNumber, 4> C_13 = two_two_expansion_diff(A_21_x_A_32, A_31_x_A_22);
std::array<RealNumber, 8> C_13_x_A11;
// ( (bx - dx) * (cy - dy) - (cx - dx) * (by - dy) ) * ( ax - dx )
int C_13_x_A11_nz = scale_expansion_zeroelim(C_13, A_11, C_13_x_A11);
std::array<RealNumber, 16> C_13_x_A11_sq;
// ( (bx - dx) * (cy - dy) - (cx - dx) * (by - dy) ) * ( ax - dx ) * (ax - dx)
int C_13_x_A11_sq_nz = scale_expansion_zeroelim(C_13_x_A11,
A_11,
C_13_x_A11_sq,
C_13_x_A11_nz);
std::array<RealNumber, 8> C_13_x_A12;
// ( (bx - dx) * (cy - dy) - (cx - dx) * (by - dy) ) * ( ay - dy )
int C_13_x_A12_nz = scale_expansion_zeroelim(C_13, A_12, C_13_x_A12);
std::array<RealNumber, 16> C_13_x_A12_sq;
// ( (bx - dx) * (cy - dy) - (cx - dx) * (by - dy) ) * ( ay - dy ) * ( ay - dy )
int C_13_x_A12_sq_nz = scale_expansion_zeroelim(C_13_x_A12, A_12,
C_13_x_A12_sq,
C_13_x_A12_nz);
std::array<RealNumber, 32> A_13_x_C13;
// ( (bx - dx) * (cy - dy) - (cx - dx) * (by - dy) )
// * ( ( ay - dy ) * ( ay - dy ) + ( ax - dx ) * (ax - dx) )
int A_13_x_C13_nz = fast_expansion_sum_zeroelim(C_13_x_A11_sq,
C_13_x_A12_sq,
A_13_x_C13,
C_13_x_A11_sq_nz,
C_13_x_A12_sq_nz);
// (cx - dx) * (ay - dy)
A_31_x_A_12[1] = two_product_tail(A_31, A_12, A_31_x_A_12[0]);
// (ax - dx) * (cy - dy)
A_11_x_A_32[1] = two_product_tail(A_11, A_32, A_11_x_A_32[0]);
// (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy)
std::array<RealNumber, 4> C_23 = two_two_expansion_diff(A_31_x_A_12,
A_11_x_A_32);
std::array<RealNumber, 8> C_23_x_A_21;
// ( (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy) ) * ( bx - dx )
int C_23_x_A_21_nz = scale_expansion_zeroelim(C_23, A_21, C_23_x_A_21);
std::array<RealNumber, 16> C_23_x_A_21_sq;
// ( (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy) ) * ( bx - dx ) * ( bx - dx )
int C_23_x_A_21_sq_nz = scale_expansion_zeroelim(C_23_x_A_21, A_21,
C_23_x_A_21_sq,
C_23_x_A_21_nz);
std::array<RealNumber, 8> C_23_x_A_22;
// ( (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy) ) * ( by - dy )
int C_23_x_A_22_nz = scale_expansion_zeroelim(C_23, A_22, C_23_x_A_22);
std::array<RealNumber, 16> C_23_x_A_22_sq;
// ( (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy) ) * ( by - dy ) * ( by - dy )
int C_23_x_A_22_sq_nz = scale_expansion_zeroelim(C_23_x_A_22, A_22,
C_23_x_A_22_sq,
C_23_x_A_22_nz);
std::array<RealNumber, 32> A_23_x_C_23;
// ( (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy) )
// * ( ( bx - dx ) * ( bx - dx ) + ( by - dy ) * ( by - dy ) )
int A_23_x_C_23_nz = fast_expansion_sum_zeroelim(C_23_x_A_21_sq,
C_23_x_A_22_sq,
A_23_x_C_23,
C_23_x_A_21_sq_nz,
C_23_x_A_22_sq_nz);
// (ax - dx) * (by - dy)
A_11_x_A_22[1] = two_product_tail(A_11, A_22, A_11_x_A_22[0]);
// (bx - dx) * (ay - dy)
A_21_x_A_12[1] = two_product_tail(A_21, A_12, A_21_x_A_12[0]);
// (ax - dx) * (by - dy) - (bx - dx) * (ay - dy)
std::array<RealNumber, 4> C_33 = two_two_expansion_diff(A_11_x_A_22,
A_21_x_A_12);
std::array<RealNumber, 8> C_33_x_A31;
// ( (ax - dx) * (by - dy) - (bx - dx) * (ay - dy) ) * ( cx - dx )
int C_33_x_A31_nz = scale_expansion_zeroelim(C_33, A_31, C_33_x_A31);
std::array<RealNumber, 16> C_33_x_A31_sq;
// ( (ax - dx) * (by - dy) - (bx - dx) * (ay - dy) ) * ( cx - dx ) * ( cx - dx )
int C_33_x_A31_sq_nz = scale_expansion_zeroelim(C_33_x_A31, A_31,
C_33_x_A31_sq,
C_33_x_A31_nz);
std::array<RealNumber, 8> C_33_x_A_32;
// ( (ax - dx) * (by - dy) - (bx - dx) * (ay - dy) ) * ( cy - dy )
int C_33_x_A_32_nz = scale_expansion_zeroelim(C_33, A_32, C_33_x_A_32);
std::array<RealNumber, 16> C_33_x_A_32_sq;
// ( (ax - dx) * (by - dy) - (bx - dx) * (ay - dy) ) * ( cy - dy ) * ( cy - dy )
int C_33_x_A_32_sq_nz = scale_expansion_zeroelim(C_33_x_A_32, A_32,
C_33_x_A_32_sq,
C_33_x_A_32_nz);
std::array<RealNumber, 32> A_33_x_C_33;
int A_33_x_C_33_nz = fast_expansion_sum_zeroelim(C_33_x_A31_sq,
C_33_x_A_32_sq,
A_33_x_C_33,
C_33_x_A31_sq_nz,
C_33_x_A_32_sq_nz);
std::array<RealNumber, 64> A_13_x_C13_p_A_13_x_C13;
int A_13_x_C13_p_A_13_x_C13_nz = fast_expansion_sum_zeroelim(
A_13_x_C13, A_23_x_C_23,
A_13_x_C13_p_A_13_x_C13,
A_13_x_C13_nz,
A_23_x_C_23_nz);
std::array<RealNumber, 96> det_expansion;
int det_expansion_nz = fast_expansion_sum_zeroelim(
A_13_x_C13_p_A_13_x_C13,
A_33_x_C_33,
det_expansion,
A_13_x_C13_p_A_13_x_C13_nz,
A_33_x_C_33_nz);
det = std::accumulate(det_expansion.begin(),
det_expansion.begin() + det_expansion_nz,
static_cast<RealNumber>(0));
if(Robustness == 1) return det;
RealNumber B_relative_bound =
(2 + 12 * std::numeric_limits<RealNumber>::epsilon())
* std::numeric_limits<RealNumber>::epsilon();
absolute_bound = B_relative_bound * magnitude;
if (std::abs(det) >= absolute_bound)
{
return det;
}
RealNumber A_11tail = two_diff_tail(p1[0], p4[0], A_11);
RealNumber A_12tail = two_diff_tail(p1[1], p4[1], A_12);
RealNumber A_21tail = two_diff_tail(p2[0], p4[0], A_21);
RealNumber A_22tail = two_diff_tail(p2[1], p4[1], A_22);
RealNumber A_31tail = two_diff_tail(p3[0], p4[0], A_31);
RealNumber A_32tail = two_diff_tail(p3[1], p4[1], A_32);
if ((A_11tail == 0) && (A_21tail == 0) && (A_31tail == 0)
&& (A_12tail == 0) && (A_22tail == 0) && (A_32tail == 0))
{
return det;
}
// RealNumber sub_bound = (1.5 + 2.0 * std::numeric_limits<RealNumber>::epsilon())
// * std::numeric_limits<RealNumber>::epsilon();
// RealNumber C_relative_bound = (11.0 + 72.0 * std::numeric_limits<RealNumber>::epsilon())
// * std::numeric_limits<RealNumber>::epsilon()
// * std::numeric_limits<RealNumber>::epsilon();
//absolute_bound = C_relative_bound * magnitude + sub_bound * std::abs(det);
det += ((A_11 * A_11 + A_12 * A_12) * ((A_21 * A_32tail + A_32 * A_21tail)
- (A_22 * A_31tail + A_31 * A_22tail))
+ 2 * (A_11 * A_11tail + A_12 * A_12tail) * (A_21 * A_32 - A_22 * A_31))
+ ((A_21 * A_21 + A_22 * A_22) * ((A_31 * A_12tail + A_12 * A_31tail)
- (A_32 * A_11tail + A_11 * A_32tail))
+ 2 * (A_21 * A_21tail + A_22 * A_22tail) * (A_31 * A_12 - A_32 * A_11))
+ ((A_31 * A_31 + A_32 * A_32) * ((A_11 * A_22tail + A_22 * A_11tail)
- (A_12 * A_21tail + A_21 * A_12tail))
+ 2 * (A_31 * A_31tail + A_32 * A_32tail) * (A_11 * A_22 - A_12 * A_21));
//if (std::abs(det) >= absolute_bound)
//{
return det;
//}
}
}} // namespace detail::precise_math
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_EXTENSIONS_TRIANGULATION_STRATEGIES_CARTESIAN_DETAIL_PRECISE_MATH_HPP