libcarla/include/system/boost/geometry/formulas/karney_inverse.hpp
2024-10-18 13:19:59 +08:00

992 lines
35 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Boost.Geometry
// Copyright (c) 2018 Adeel Ahmad, Islamabad, Pakistan.
// Contributed and/or modified by Adeel Ahmad, as part of Google Summer of Code 2018 program.
// This file was modified by Oracle on 2019-2021.
// Modifications copyright (c) 2019-2021 Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This file is converted from GeographicLib, https://geographiclib.sourceforge.io
// GeographicLib is originally written by Charles Karney.
// Author: Charles Karney (2008-2017)
// Last updated version of GeographicLib: 1.49
// Original copyright notice:
// Copyright (c) Charles Karney (2008-2017) <charles@karney.com> and licensed
// under the MIT/X11 License. For more information, see
// https://geographiclib.sourceforge.io
#ifndef BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP
#define BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/hypot.hpp>
#include <boost/geometry/util/condition.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/precise_math.hpp>
#include <boost/geometry/util/series_expansion.hpp>
#include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
#include <boost/geometry/formulas/flattening.hpp>
#include <boost/geometry/formulas/result_inverse.hpp>
namespace boost { namespace geometry { namespace math {
/*!
\brief The exact difference of two angles reduced to (-180deg, 180deg].
*/
template<typename T>
inline T difference_angle(T const& x, T const& y, T& e)
{
auto res1 = boost::geometry::detail::precise_math::two_sum(
std::remainder(-x, T(360)), std::remainder(y, T(360)));
normalize_azimuth<degree, T>(res1[0]);
// Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and
// abs(t) <= eps (eps = 2^-45 for doubles). The only case where the
// addition of t takes the result outside the range (-180,180] is d = 180
// and t > 0. The case, d = -180 + eps, t = -eps, can't happen, since
// sum_error would have returned the exact result in such a case (i.e., given t = 0).
auto res2 = boost::geometry::detail::precise_math::two_sum(
res1[0] == 180 && res1[1] > 0 ? -180 : res1[0], res1[1]);
e = res2[1];
return res2[0];
}
}}} // namespace boost::geometry::math
namespace boost { namespace geometry { namespace formula
{
namespace se = series_expansion;
namespace detail
{
template <
typename CT,
bool EnableDistance,
bool EnableAzimuth,
bool EnableReverseAzimuth = false,
bool EnableReducedLength = false,
bool EnableGeodesicScale = false,
size_t SeriesOrder = 8
>
class karney_inverse
{
static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities;
static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities;
static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;
public:
typedef result_inverse<CT> result_type;
template <typename T1, typename T2, typename Spheroid>
static inline result_type apply(T1 const& lo1,
T1 const& la1,
T2 const& lo2,
T2 const& la2,
Spheroid const& spheroid)
{
static CT const c0 = 0;
static CT const c0_001 = 0.001;
static CT const c0_1 = 0.1;
static CT const c1 = 1;
static CT const c2 = 2;
static CT const c3 = 3;
static CT const c8 = 8;
static CT const c16 = 16;
static CT const c90 = 90;
static CT const c180 = 180;
static CT const c200 = 200;
static CT const pi = math::pi<CT>();
static CT const d2r = math::d2r<CT>();
static CT const r2d = math::r2d<CT>();
result_type result;
CT lat1 = la1 * r2d;
CT lat2 = la2 * r2d;
CT lon1 = lo1 * r2d;
CT lon2 = lo2 * r2d;
CT const a = CT(get_radius<0>(spheroid));
CT const b = CT(get_radius<2>(spheroid));
CT const f = formula::flattening<CT>(spheroid);
CT const one_minus_f = c1 - f;
CT const two_minus_f = c2 - f;
CT const tol0 = std::numeric_limits<CT>::epsilon();
CT const tol1 = c200 * tol0;
CT const tol2 = sqrt(tol0);
// Check on bisection interval.
CT const tol_bisection = tol0 * tol2;
CT const etol2 = c0_1 * tol2 /
sqrt((std::max)(c0_001, std::abs(f)) * (std::min)(c1, c1 - f / c2) / c2);
CT tiny = std::sqrt((std::numeric_limits<CT>::min)());
CT const n = f / two_minus_f;
CT const e2 = f * two_minus_f;
CT const ep2 = e2 / math::sqr(one_minus_f);
// Compute the longitudinal difference.
CT lon12_error;
CT lon12 = math::difference_angle(lon1, lon2, lon12_error);
int lon12_sign = lon12 >= 0 ? 1 : -1;
// Make points close to the meridian to lie on it.
lon12 = lon12_sign * lon12;
lon12_error = (c180 - lon12) - lon12_sign * lon12_error;
// Convert to radians.
CT lam12 = lon12 * d2r;
CT sin_lam12;
CT cos_lam12;
if (lon12 > c90)
{
math::sin_cos_degrees(lon12_error, sin_lam12, cos_lam12);
cos_lam12 *= -c1;
}
else
{
math::sin_cos_degrees(lon12, sin_lam12, cos_lam12);
}
// Make points close to the equator to lie on it.
lat1 = math::round_angle(std::abs(lat1) > c90 ? c90 : lat1);
lat2 = math::round_angle(std::abs(lat2) > c90 ? c90 : lat2);
// Arrange points in a canonical form, as explained in
// paper, Algorithms for geodesics, Eq. (44):
//
// 0 <= lon12 <= 180
// -90 <= lat1 <= 0
// lat1 <= lat2 <= -lat1
int swap_point = std::abs(lat1) < std::abs(lat2) ? -1 : 1;
if (swap_point < 0)
{
lon12_sign *= -1;
swap(lat1, lat2);
}
// Enforce lat1 to be <= 0.
int lat_sign = lat1 < 0 ? 1 : -1;
lat1 *= lat_sign;
lat2 *= lat_sign;
CT sin_beta1, cos_beta1;
math::sin_cos_degrees(lat1, sin_beta1, cos_beta1);
sin_beta1 *= one_minus_f;
math::normalize_unit_vector<CT>(sin_beta1, cos_beta1);
cos_beta1 = (std::max)(tiny, cos_beta1);
CT sin_beta2, cos_beta2;
math::sin_cos_degrees(lat2, sin_beta2, cos_beta2);
sin_beta2 *= one_minus_f;
math::normalize_unit_vector<CT>(sin_beta2, cos_beta2);
cos_beta2 = (std::max)(tiny, cos_beta2);
// If cos_beta1 < -sin_beta1, then cos_beta2 - cos_beta1 is a
// sensitive measure of the |beta1| - |beta2|. Alternatively,
// (cos_beta1 >= -sin_beta1), abs(sin_beta2) + sin_beta1 is
// a better measure.
// Sometimes these quantities vanish and in that case we
// force beta2 = +/- bet1a exactly.
if (cos_beta1 < -sin_beta1)
{
if (cos_beta1 == cos_beta2)
{
sin_beta2 = sin_beta2 < 0 ? sin_beta1 : -sin_beta1;
}
}
else
{
if (std::abs(sin_beta2) == -sin_beta1)
{
cos_beta2 = cos_beta1;
}
}
CT const dn1 = sqrt(c1 + ep2 * math::sqr(sin_beta1));
CT const dn2 = sqrt(c1 + ep2 * math::sqr(sin_beta2));
CT sigma12;
CT m12x = c0;
CT s12x;
CT M21;
// Index zero element of coeffs_C1 is unused.
se::coeffs_C1<SeriesOrder, CT> const coeffs_C1(n);
bool meridian = lat1 == -90 || sin_lam12 == 0;
CT cos_alpha1, sin_alpha1;
CT cos_alpha2, sin_alpha2;
if (meridian)
{
// Endpoints lie on a single full meridian.
// Point to the target latitude.
cos_alpha1 = cos_lam12;
sin_alpha1 = sin_lam12;
// Heading north at the target.
cos_alpha2 = c1;
sin_alpha2 = c0;
CT sin_sigma1 = sin_beta1;
CT cos_sigma1 = cos_alpha1 * cos_beta1;
CT sin_sigma2 = sin_beta2;
CT cos_sigma2 = cos_alpha2 * cos_beta2;
CT sigma12 = std::atan2((std::max)(c0, cos_sigma1 * sin_sigma2 - sin_sigma1 * cos_sigma2),
cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2);
CT dummy;
meridian_length(n, ep2, sigma12, sin_sigma1, cos_sigma1, dn1,
sin_sigma2, cos_sigma2, dn2,
cos_beta1, cos_beta2, s12x,
m12x, dummy, result.geodesic_scale,
M21, coeffs_C1);
if (sigma12 < c1 || m12x >= c0)
{
if (sigma12 < c3 * tiny)
{
sigma12 = m12x = s12x = c0;
}
m12x *= b;
s12x *= b;
}
else
{
// m12 < 0, i.e., prolate and too close to anti-podal.
meridian = false;
}
}
CT omega12;
if (!meridian && sin_beta1 == c0 &&
(f <= c0 || lon12_error >= f * c180))
{
// Points lie on the equator.
cos_alpha1 = cos_alpha2 = c0;
sin_alpha1 = sin_alpha2 = c1;
s12x = a * lam12;
sigma12 = omega12 = lam12 / one_minus_f;
m12x = b * sin(sigma12);
if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
{
result.geodesic_scale = cos(sigma12);
}
}
else if (!meridian)
{
// If point1 and point2 belong within a hemisphere bounded by a
// meridian and geodesic is neither meridional nor equatorial.
// Find the starting point for Newton's method.
CT dnm = c1;
sigma12 = newton_start(sin_beta1, cos_beta1, dn1,
sin_beta2, cos_beta2, dn2,
lam12, sin_lam12, cos_lam12,
sin_alpha1, cos_alpha1,
sin_alpha2, cos_alpha2,
dnm, coeffs_C1, ep2,
tol1, tol2, etol2,
n, f);
if (sigma12 >= c0)
{
// Short lines case (newton_start sets sin_alpha2, cos_alpha2, dnm).
s12x = sigma12 * b * dnm;
m12x = math::sqr(dnm) * b * sin(sigma12 / dnm);
if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
{
result.geodesic_scale = cos(sigma12 / dnm);
}
// Convert to radians.
omega12 = lam12 / (one_minus_f * dnm);
}
else
{
// Apply the Newton's method.
CT sin_sigma1 = c0, cos_sigma1 = c0;
CT sin_sigma2 = c0, cos_sigma2 = c0;
CT eps = c0, diff_omega12 = c0;
// Bracketing range.
CT sin_alpha1a = tiny, cos_alpha1a = c1;
CT sin_alpha1b = tiny, cos_alpha1b = -c1;
size_t iteration = 0;
size_t max_iterations = 20 + std::numeric_limits<size_t>::digits + 10;
for (bool tripn = false, tripb = false;
iteration < max_iterations;
++iteration)
{
CT dv = c0;
CT v = lambda12(sin_beta1, cos_beta1, dn1,
sin_beta2, cos_beta2, dn2,
sin_alpha1, cos_alpha1,
sin_lam12, cos_lam12,
sin_alpha2, cos_alpha2,
sigma12,
sin_sigma1, cos_sigma1,
sin_sigma2, cos_sigma2,
eps, diff_omega12,
iteration < max_iterations,
dv, f, n, ep2, tiny, coeffs_C1);
// Reversed test to allow escape with NaNs.
if (tripb || !(std::abs(v) >= (tripn ? c8 : c1) * tol0))
break;
// Update bracketing values.
if (v > c0 && (iteration > max_iterations ||
cos_alpha1 / sin_alpha1 > cos_alpha1b / sin_alpha1b))
{
sin_alpha1b = sin_alpha1;
cos_alpha1b = cos_alpha1;
}
else if (v < c0 && (iteration > max_iterations ||
cos_alpha1 / sin_alpha1 < cos_alpha1a / sin_alpha1a))
{
sin_alpha1a = sin_alpha1;
cos_alpha1a = cos_alpha1;
}
if (iteration < max_iterations && dv > c0)
{
CT diff_alpha1 = -v / dv;
CT sin_diff_alpha1 = sin(diff_alpha1);
CT cos_diff_alpha1 = cos(diff_alpha1);
CT nsin_alpha1 = sin_alpha1 * cos_diff_alpha1 +
cos_alpha1 * sin_diff_alpha1;
if (nsin_alpha1 > c0 && std::abs(diff_alpha1) < pi)
{
cos_alpha1 = cos_alpha1 * cos_diff_alpha1 - sin_alpha1 * sin_diff_alpha1;
sin_alpha1 = nsin_alpha1;
math::normalize_unit_vector<CT>(sin_alpha1, cos_alpha1);
// In some regimes we don't get quadratic convergence because
// slope -> 0. So use convergence conditions based on epsilon
// instead of sqrt(epsilon).
tripn = std::abs(v) <= c16 * tol0;
continue;
}
}
// Either dv was not positive or updated value was outside legal
// range. Use the midpoint of the bracket as the next estimate.
// This mechanism is not needed for the WGS84 ellipsoid, but it does
// catch problems with more eeccentric ellipsoids. Its efficacy is
// such for the WGS84 test set with the starting guess set to alp1 =
// 90deg:
// the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
// WGS84 and random input: mean = 4.74, sd = 0.99
sin_alpha1 = (sin_alpha1a + sin_alpha1b) / c2;
cos_alpha1 = (cos_alpha1a + cos_alpha1b) / c2;
math::normalize_unit_vector<CT>(sin_alpha1, cos_alpha1);
tripn = false;
tripb = (std::abs(sin_alpha1a - sin_alpha1) + (cos_alpha1a - cos_alpha1) < tol_bisection ||
std::abs(sin_alpha1 - sin_alpha1b) + (cos_alpha1 - cos_alpha1b) < tol_bisection);
}
CT dummy;
se::coeffs_C1<SeriesOrder, CT> const coeffs_C1_eps(eps);
// Ensure that the reduced length and geodesic scale are computed in
// a "canonical" way, with the I2 integral.
meridian_length(eps, ep2, sigma12, sin_sigma1, cos_sigma1, dn1,
sin_sigma2, cos_sigma2, dn2,
cos_beta1, cos_beta2, s12x,
m12x, dummy, result.geodesic_scale,
M21, coeffs_C1_eps);
m12x *= b;
s12x *= b;
}
}
if (swap_point < 0)
{
swap(sin_alpha1, sin_alpha2);
swap(cos_alpha1, cos_alpha2);
swap(result.geodesic_scale, M21);
}
sin_alpha1 *= swap_point * lon12_sign;
cos_alpha1 *= swap_point * lat_sign;
sin_alpha2 *= swap_point * lon12_sign;
cos_alpha2 *= swap_point * lat_sign;
if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
{
result.reduced_length = m12x;
}
if (BOOST_GEOMETRY_CONDITION(CalcAzimuths))
{
if (BOOST_GEOMETRY_CONDITION(CalcFwdAzimuth))
{
result.azimuth = atan2(sin_alpha1, cos_alpha1);
}
if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
{
result.reverse_azimuth = atan2(sin_alpha2, cos_alpha2);
}
}
if (BOOST_GEOMETRY_CONDITION(EnableDistance))
{
result.distance = s12x;
}
return result;
}
template <typename CoeffsC1>
static inline void meridian_length(CT const& epsilon, CT const& ep2, CT const& sigma12,
CT const& sin_sigma1, CT const& cos_sigma1, CT const& dn1,
CT const& sin_sigma2, CT const& cos_sigma2, CT const& dn2,
CT const& cos_beta1, CT const& cos_beta2,
CT& s12x, CT& m12x, CT& m0,
CT& M12, CT& M21,
CoeffsC1 const& coeffs_C1)
{
static CT const c1 = 1;
CT A12x = 0, J12 = 0;
CT expansion_A1, expansion_A2;
// Evaluate the coefficients for C2.
se::coeffs_C2<SeriesOrder, CT> coeffs_C2(epsilon);
if (BOOST_GEOMETRY_CONDITION(EnableDistance) ||
BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
{
// Find the coefficients for A1 by computing the
// series expansion using Horner scehme.
expansion_A1 = se::evaluate_A1<SeriesOrder>(epsilon);
if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
{
// Find the coefficients for A2 by computing the
// series expansion using Horner scehme.
expansion_A2 = se::evaluate_A2<SeriesOrder>(epsilon);
A12x = expansion_A1 - expansion_A2;
expansion_A2 += c1;
}
expansion_A1 += c1;
}
if (BOOST_GEOMETRY_CONDITION(EnableDistance))
{
CT B1 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C1)
- se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C1);
s12x = expansion_A1 * (sigma12 + B1);
if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
{
CT B2 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C2)
- se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C2);
J12 = A12x * sigma12 + (expansion_A1 * B1 - expansion_A2 * B2);
}
}
else if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
{
for (size_t i = 1; i <= SeriesOrder; ++i)
{
coeffs_C2[i] = expansion_A1 * coeffs_C1[i] -
expansion_A2 * coeffs_C2[i];
}
J12 = A12x * sigma12 +
(se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C2)
- se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C2));
}
if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
{
m0 = A12x;
m12x = dn2 * (cos_sigma1 * sin_sigma2) -
dn1 * (sin_sigma1 * cos_sigma2) -
cos_sigma1 * cos_sigma2 * J12;
}
if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
{
CT cos_sigma12 = cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2;
CT t = ep2 * (cos_beta1 - cos_beta2) *
(cos_beta1 + cos_beta2) / (dn1 + dn2);
M12 = cos_sigma12 + (t * sin_sigma2 - cos_sigma2 * J12) * sin_sigma1 / dn1;
M21 = cos_sigma12 - (t * sin_sigma1 - cos_sigma1 * J12) * sin_sigma2 / dn2;
}
}
/*
Return a starting point for Newton's method in sin_alpha1 and
cos_alpha1 (function value is -1). If Newton's method
doesn't need to be used, return also sin_alpha2 and
cos_alpha2 and function value is sig12.
*/
template <typename CoeffsC1>
static inline CT newton_start(CT const& sin_beta1, CT const& cos_beta1, CT const& dn1,
CT const& sin_beta2, CT const& cos_beta2, CT dn2,
CT const& lam12, CT const& sin_lam12, CT const& cos_lam12,
CT& sin_alpha1, CT& cos_alpha1,
CT& sin_alpha2, CT& cos_alpha2,
CT& dnm, CoeffsC1 const& coeffs_C1, CT const& ep2,
CT const& tol1, CT const& tol2, CT const& etol2, CT const& n,
CT const& f)
{
static CT const c0 = 0;
static CT const c0_01 = 0.01;
static CT const c0_1 = 0.1;
static CT const c0_5 = 0.5;
static CT const c1 = 1;
static CT const c2 = 2;
static CT const c6 = 6;
static CT const c1000 = 1000;
static CT const pi = math::pi<CT>();
CT const one_minus_f = c1 - f;
CT const x_thresh = c1000 * tol2;
// Return a starting point for Newton's method in sin_alpha1
// and cos_alpha1 (function value is -1). If Newton's method
// doesn't need to be used, return also sin_alpha2 and
// cos_alpha2 and function value is sig12.
CT sig12 = -c1;
// bet12 = bet2 - bet1 in [0, pi); beta12a = bet2 + bet1 in (-pi, 0]
CT sin_beta12 = sin_beta2 * cos_beta1 - cos_beta2 * sin_beta1;
CT cos_beta12 = cos_beta2 * cos_beta1 + sin_beta2 * sin_beta1;
CT sin_beta12a = sin_beta2 * cos_beta1 + cos_beta2 * sin_beta1;
bool shortline = cos_beta12 >= c0 && sin_beta12 < c0_5 &&
cos_beta2 * lam12 < c0_5;
CT sin_omega12, cos_omega12;
if (shortline)
{
CT sin_beta_m2 = math::sqr(sin_beta1 + sin_beta2);
sin_beta_m2 /= sin_beta_m2 + math::sqr(cos_beta1 + cos_beta2);
dnm = math::sqrt(c1 + ep2 * sin_beta_m2);
CT omega12 = lam12 / (one_minus_f * dnm);
sin_omega12 = sin(omega12);
cos_omega12 = cos(omega12);
}
else
{
sin_omega12 = sin_lam12;
cos_omega12 = cos_lam12;
}
sin_alpha1 = cos_beta2 * sin_omega12;
cos_alpha1 = cos_omega12 >= c0 ?
sin_beta12 + cos_beta2 * sin_beta1 * math::sqr(sin_omega12) / (c1 + cos_omega12) :
sin_beta12a - cos_beta2 * sin_beta1 * math::sqr(sin_omega12) / (c1 - cos_omega12);
CT sin_sigma12 = boost::math::hypot(sin_alpha1, cos_alpha1);
CT cos_sigma12 = sin_beta1 * sin_beta2 + cos_beta1 * cos_beta2 * cos_omega12;
if (shortline && sin_sigma12 < etol2)
{
sin_alpha2 = cos_beta1 * sin_omega12;
cos_alpha2 = sin_beta12 - cos_beta1 * sin_beta2 *
(cos_omega12 >= c0 ? math::sqr(sin_omega12) /
(c1 + cos_omega12) : c1 - cos_omega12);
math::normalize_unit_vector<CT>(sin_alpha2, cos_alpha2);
// Set return value.
sig12 = atan2(sin_sigma12, cos_sigma12);
}
// Skip astroid calculation if too eccentric.
else if (std::abs(n) > c0_1 ||
cos_sigma12 >= c0 ||
sin_sigma12 >= c6 * std::abs(n) * pi *
math::sqr(cos_beta1))
{
// Nothing to do, zeroth order spherical approximation will do.
}
else
{
// Scale lam12 and bet2 to x, y coordinate system where antipodal
// point is at origin and singular point is at y = 0, x = -1.
CT lambda_scale, beta_scale;
CT y;
volatile CT x;
CT lam12x = atan2(-sin_lam12, -cos_lam12);
if (f >= c0)
{
CT k2 = math::sqr(sin_beta1) * ep2;
CT eps = k2 / (c2 * (c1 + sqrt(c1 + k2)) + k2);
se::coeffs_A3<SeriesOrder, CT> const coeffs_A3(n);
CT const A3 = math::horner_evaluate(eps, coeffs_A3.begin(), coeffs_A3.end());
lambda_scale = f * cos_beta1 * A3 * pi;
beta_scale = lambda_scale * cos_beta1;
x = lam12x / lambda_scale;
y = sin_beta12a / beta_scale;
}
else
{
CT cos_beta12a = cos_beta2 * cos_beta1 - sin_beta2 * sin_beta1;
CT beta12a = atan2(sin_beta12a, cos_beta12a);
CT m12b = c0;
CT m0 = c1;
CT dummy;
meridian_length(n, ep2, pi + beta12a,
sin_beta1, -cos_beta1, dn1,
sin_beta2, cos_beta2, dn2,
cos_beta1, cos_beta2, dummy,
m12b, m0, dummy, dummy, coeffs_C1);
x = -c1 + m12b / (cos_beta1 * cos_beta2 * m0 * pi);
beta_scale = x < -c0_01
? sin_beta12a / x
: -f * math::sqr(cos_beta1) * pi;
lambda_scale = beta_scale / cos_beta1;
y = lam12x / lambda_scale;
}
if (y > -tol1 && x > -c1 - x_thresh)
{
// Strip near cut.
if (f >= c0)
{
sin_alpha1 = (std::min)(c1, -CT(x));
cos_alpha1 = - math::sqrt(c1 - math::sqr(sin_alpha1));
}
else
{
cos_alpha1 = (std::max)(CT(x > -tol1 ? c0 : -c1), CT(x));
sin_alpha1 = math::sqrt(c1 - math::sqr(cos_alpha1));
}
}
else
{
// Solve the astroid problem.
CT k = astroid(CT(x), y);
CT omega12a = lambda_scale * (f >= c0 ? -x * k /
(c1 + k) : -y * (c1 + k) / k);
sin_omega12 = sin(omega12a);
cos_omega12 = -cos(omega12a);
// Update spherical estimate of alpha1 using omgega12 instead of lam12.
sin_alpha1 = cos_beta2 * sin_omega12;
cos_alpha1 = sin_beta12a - cos_beta2 * sin_beta1 *
math::sqr(sin_omega12) / (c1 - cos_omega12);
}
}
// Sanity check on starting guess. Backwards check allows NaN through.
if (!(sin_alpha1 <= c0))
{
math::normalize_unit_vector<CT>(sin_alpha1, cos_alpha1);
}
else
{
sin_alpha1 = c1;
cos_alpha1 = c0;
}
return sig12;
}
/*
Solve the astroid problem using the equation:
κ4 + 2κ3 + (1 x2 y 2 )κ2 2y 2 κ y 2 = 0.
For details, please refer to Eq. (65) in,
Geodesics on an ellipsoid of revolution, Charles F.F Karney,
https://arxiv.org/abs/1102.1215
*/
static inline CT astroid(CT const& x, CT const& y)
{
static CT const c0 = 0;
static CT const c1 = 1;
static CT const c2 = 2;
static CT const c3 = 3;
static CT const c4 = 4;
static CT const c6 = 6;
CT k;
CT p = math::sqr(x);
CT q = math::sqr(y);
CT r = (p + q - c1) / c6;
if (!(q == c0 && r <= c0))
{
// Avoid possible division by zero when r = 0 by multiplying
// equations for s and t by r^3 and r, respectively.
CT S = p * q / c4;
CT r2 = math::sqr(r);
CT r3 = r * r2;
// The discriminant of the quadratic equation for T3. This is
// zero on the evolute curve p^(1/3)+q^(1/3) = 1.
CT discriminant = S * (S + c2 * r3);
CT u = r;
if (discriminant >= c0)
{
CT T3 = S + r3;
// Pick the sign on the sqrt to maximize abs(T3). This minimizes
// loss of precision due to cancellation. The result is unchanged
// because of the way the T is used in definition of u.
T3 += T3 < c0 ? -std::sqrt(discriminant) : std::sqrt(discriminant);
CT T = std::cbrt(T3);
// T can be zero; but then r2 / T -> 0.
u += T + (T != c0 ? r2 / T : c0);
}
else
{
CT ang = std::atan2(std::sqrt(-discriminant), -(S + r3));
// There are three possible cube roots. We choose the root which avoids
// cancellation. Note that discriminant < 0 implies that r < 0.
u += c2 * r * cos(ang / c3);
}
CT v = std::sqrt(math::sqr(u) + q);
// Avoid loss of accuracy when u < 0.
CT uv = u < c0 ? q / (v - u) : u + v;
CT w = (uv - q) / (c2 * v);
// Rearrange expression for k to avoid loss of accuracy due to
// subtraction. Division by 0 not possible because uv > 0, w >= 0.
k = uv / (std::sqrt(uv + math::sqr(w)) + w);
}
else // q == 0 && r <= 0
{
// y = 0 with |x| <= 1. Handle this case directly.
// For y small, positive root is k = abs(y)/sqrt(1-x^2).
k = c0;
}
return k;
}
template <typename CoeffsC1>
static inline CT lambda12(CT const& sin_beta1, CT const& cos_beta1, CT const& dn1,
CT const& sin_beta2, CT const& cos_beta2, CT const& dn2,
CT const& sin_alpha1, CT cos_alpha1,
CT const& sin_lam120, CT const& cos_lam120,
CT& sin_alpha2, CT& cos_alpha2,
CT& sigma12,
CT& sin_sigma1, CT& cos_sigma1,
CT& sin_sigma2, CT& cos_sigma2,
CT& eps, CT& diff_omega12,
bool diffp, CT& diff_lam12,
CT const& f, CT const& n, CT const& ep2, CT const& tiny,
CoeffsC1 const& coeffs_C1)
{
static CT const c0 = 0;
static CT const c1 = 1;
static CT const c2 = 2;
CT const one_minus_f = c1 - f;
if (sin_beta1 == c0 && cos_alpha1 == c0)
{
// Break degeneracy of equatorial line.
cos_alpha1 = -tiny;
}
CT sin_alpha0 = sin_alpha1 * cos_beta1;
CT cos_alpha0 = boost::math::hypot(cos_alpha1, sin_alpha1 * sin_beta1);
CT sin_omega1, cos_omega1;
CT sin_omega2, cos_omega2;
CT sin_omega12, cos_omega12;
CT lam12;
sin_sigma1 = sin_beta1;
sin_omega1 = sin_alpha0 * sin_beta1;
cos_sigma1 = cos_omega1 = cos_alpha1 * cos_beta1;
math::normalize_unit_vector<CT>(sin_sigma1, cos_sigma1);
// Enforce symmetries in the case abs(beta2) = -beta1.
// Otherwise, this can yield singularities in the Newton iteration.
// sin(alpha2) * cos(beta2) = sin(alpha0).
sin_alpha2 = cos_beta2 != cos_beta1 ?
sin_alpha0 / cos_beta2 : sin_alpha1;
cos_alpha2 = cos_beta2 != cos_beta1 || std::abs(sin_beta2) != -sin_beta1 ?
sqrt(math::sqr(cos_alpha1 * cos_beta1) +
(cos_beta1 < -sin_beta1 ?
(cos_beta2 - cos_beta1) * (cos_beta1 + cos_beta2) :
(sin_beta1 - sin_beta2) * (sin_beta1 + sin_beta2))) / cos_beta2 :
std::abs(cos_alpha1);
sin_sigma2 = sin_beta2;
sin_omega2 = sin_alpha0 * sin_beta2;
cos_sigma2 = cos_omega2 =
(cos_alpha2 * cos_beta2);
// Break degeneracy of equatorial line.
math::normalize_unit_vector<CT>(sin_sigma2, cos_sigma2);
// sig12 = sig2 - sig1, limit to [0, pi].
sigma12 = atan2((std::max)(c0, cos_sigma1 * sin_sigma2 - sin_sigma1 * cos_sigma2),
cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2);
// omg12 = omg2 - omg1, limit to [0, pi].
sin_omega12 = (std::max)(c0, cos_omega1 * sin_omega2 - sin_omega1 * cos_omega2);
cos_omega12 = cos_omega1 * cos_omega2 + sin_omega1 * sin_omega2;
// eta = omg12 - lam120.
CT eta = atan2(sin_omega12 * cos_lam120 - cos_omega12 * sin_lam120,
cos_omega12 * cos_lam120 + sin_omega12 * sin_lam120);
CT B312;
CT k2 = math::sqr(cos_alpha0) * ep2;
eps = k2 / (c2 * (c1 + std::sqrt(c1 + k2)) + k2);
se::coeffs_C3<SeriesOrder, CT> const coeffs_C3(n, eps);
B312 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C3)
- se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C3);
se::coeffs_A3<SeriesOrder, CT> const coeffs_A3(n);
CT const A3 = math::horner_evaluate(eps, coeffs_A3.begin(), coeffs_A3.end());
diff_omega12 = -f * A3 * sin_alpha0 * (sigma12 + B312);
lam12 = eta + diff_omega12;
if (diffp)
{
if (cos_alpha2 == c0)
{
diff_lam12 = - c2 * one_minus_f * dn1 / sin_beta1;
}
else
{
CT dummy;
meridian_length(eps, ep2, sigma12, sin_sigma1, cos_sigma1, dn1,
sin_sigma2, cos_sigma2, dn2,
cos_beta1, cos_beta2, dummy,
diff_lam12, dummy, dummy,
dummy, coeffs_C1);
diff_lam12 *= one_minus_f / (cos_alpha2 * cos_beta2);
}
}
return lam12;
}
};
} // namespace detail
/*!
\brief The solution of the inverse problem of geodesics on latlong coordinates,
after Karney (2011).
\author See
- Charles F.F Karney, Algorithms for geodesics, 2011
https://arxiv.org/pdf/1109.4448.pdf
*/
template <
typename CT,
bool EnableDistance,
bool EnableAzimuth,
bool EnableReverseAzimuth = false,
bool EnableReducedLength = false,
bool EnableGeodesicScale = false
>
struct karney_inverse
: detail::karney_inverse
<
CT,
EnableDistance,
EnableAzimuth,
EnableReverseAzimuth,
EnableReducedLength,
EnableGeodesicScale
>
{};
}}} // namespace boost::geometry::formula
#endif // BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP