294 lines
9.7 KiB
C++
294 lines
9.7 KiB
C++
// Boost.Geometry
|
|
|
|
// Copyright (c) 2018 Adam Wulkiewicz, Lodz, Poland.
|
|
|
|
// Copyright (c) 2015-2020 Oracle and/or its affiliates.
|
|
|
|
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
|
|
|
|
// Use, modification and distribution is subject to the Boost Software License,
|
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_GEOMETRY_FORMULAS_ANDOYER_INVERSE_HPP
|
|
#define BOOST_GEOMETRY_FORMULAS_ANDOYER_INVERSE_HPP
|
|
|
|
|
|
#include <boost/math/constants/constants.hpp>
|
|
|
|
#include <boost/geometry/core/radius.hpp>
|
|
|
|
#include <boost/geometry/util/condition.hpp>
|
|
#include <boost/geometry/util/math.hpp>
|
|
|
|
#include <boost/geometry/formulas/differential_quantities.hpp>
|
|
#include <boost/geometry/formulas/flattening.hpp>
|
|
#include <boost/geometry/formulas/result_inverse.hpp>
|
|
|
|
|
|
namespace boost { namespace geometry { namespace formula
|
|
{
|
|
|
|
/*!
|
|
\brief The solution of the inverse problem of geodesics on latlong coordinates,
|
|
Forsyth-Andoyer-Lambert type approximation with first order terms.
|
|
\author See
|
|
- Technical Report: PAUL D. THOMAS, MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, 1965
|
|
http://www.dtic.mil/docs/citations/AD0627893
|
|
- Technical Report: PAUL D. THOMAS, SPHEROIDAL GEODESICS, REFERENCE SYSTEMS, AND LOCAL GEOMETRY, 1970
|
|
http://www.dtic.mil/docs/citations/AD703541
|
|
*/
|
|
template <
|
|
typename CT,
|
|
bool EnableDistance,
|
|
bool EnableAzimuth,
|
|
bool EnableReverseAzimuth = false,
|
|
bool EnableReducedLength = false,
|
|
bool EnableGeodesicScale = false
|
|
>
|
|
class andoyer_inverse
|
|
{
|
|
static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
|
|
static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities;
|
|
static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities;
|
|
static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;
|
|
|
|
public:
|
|
typedef result_inverse<CT> result_type;
|
|
|
|
template <typename T1, typename T2, typename Spheroid>
|
|
static inline result_type apply(T1 const& lon1,
|
|
T1 const& lat1,
|
|
T2 const& lon2,
|
|
T2 const& lat2,
|
|
Spheroid const& spheroid)
|
|
{
|
|
result_type result;
|
|
|
|
// coordinates in radians
|
|
|
|
if ( math::equals(lon1, lon2) && math::equals(lat1, lat2) )
|
|
{
|
|
return result;
|
|
}
|
|
|
|
CT const c0 = CT(0);
|
|
CT const c1 = CT(1);
|
|
CT const pi = math::pi<CT>();
|
|
CT const f = formula::flattening<CT>(spheroid);
|
|
|
|
CT const dlon = lon2 - lon1;
|
|
CT const sin_dlon = sin(dlon);
|
|
CT const cos_dlon = cos(dlon);
|
|
CT const sin_lat1 = sin(lat1);
|
|
CT const cos_lat1 = cos(lat1);
|
|
CT const sin_lat2 = sin(lat2);
|
|
CT const cos_lat2 = cos(lat2);
|
|
|
|
// H,G,T = infinity if cos_d = 1 or cos_d = -1
|
|
// lat1 == +-90 && lat2 == +-90
|
|
// lat1 == lat2 && lon1 == lon2
|
|
CT cos_d = sin_lat1*sin_lat2 + cos_lat1*cos_lat2*cos_dlon;
|
|
// on some platforms cos_d may be outside valid range
|
|
if (cos_d < -c1)
|
|
cos_d = -c1;
|
|
else if (cos_d > c1)
|
|
cos_d = c1;
|
|
|
|
CT const d = acos(cos_d); // [0, pi]
|
|
CT const sin_d = sin(d); // [-1, 1]
|
|
|
|
if ( BOOST_GEOMETRY_CONDITION(EnableDistance) )
|
|
{
|
|
CT const K = math::sqr(sin_lat1-sin_lat2);
|
|
CT const L = math::sqr(sin_lat1+sin_lat2);
|
|
CT const three_sin_d = CT(3) * sin_d;
|
|
|
|
CT const one_minus_cos_d = c1 - cos_d;
|
|
CT const one_plus_cos_d = c1 + cos_d;
|
|
// cos_d = 1 means that the points are very close
|
|
// cos_d = -1 means that the points are antipodal
|
|
|
|
CT const H = math::equals(one_minus_cos_d, c0) ?
|
|
c0 :
|
|
(d + three_sin_d) / one_minus_cos_d;
|
|
CT const G = math::equals(one_plus_cos_d, c0) ?
|
|
c0 :
|
|
(d - three_sin_d) / one_plus_cos_d;
|
|
|
|
CT const dd = -(f/CT(4))*(H*K+G*L);
|
|
|
|
CT const a = CT(get_radius<0>(spheroid));
|
|
|
|
result.distance = a * (d + dd);
|
|
}
|
|
|
|
if ( BOOST_GEOMETRY_CONDITION(CalcAzimuths) )
|
|
{
|
|
// sin_d = 0 <=> antipodal points (incl. poles) or very close
|
|
if (math::equals(sin_d, c0))
|
|
{
|
|
// T = inf
|
|
// dA = inf
|
|
// azimuth = -inf
|
|
|
|
// TODO: The following azimuths are inconsistent with distance
|
|
// i.e. according to azimuths below a segment with antipodal endpoints
|
|
// travels through the north pole, however the distance returned above
|
|
// is the length of a segment traveling along the equator.
|
|
// Furthermore, this special case handling is only done in andoyer
|
|
// formula.
|
|
// The most correct way of fixing it is to handle antipodal regions
|
|
// correctly and consistently across all formulas.
|
|
|
|
// points very close
|
|
if (cos_d >= c0)
|
|
{
|
|
result.azimuth = c0;
|
|
result.reverse_azimuth = c0;
|
|
}
|
|
// antipodal points
|
|
else
|
|
{
|
|
// Set azimuth to 0 unless the first endpoint is the north pole
|
|
if (! math::equals(sin_lat1, c1))
|
|
{
|
|
result.azimuth = c0;
|
|
result.reverse_azimuth = pi;
|
|
}
|
|
else
|
|
{
|
|
result.azimuth = pi;
|
|
result.reverse_azimuth = c0;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CT const c2 = CT(2);
|
|
|
|
CT A = c0;
|
|
CT U = c0;
|
|
if (math::equals(cos_lat2, c0))
|
|
{
|
|
if (sin_lat2 < c0)
|
|
{
|
|
A = pi;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CT const tan_lat2 = sin_lat2/cos_lat2;
|
|
CT const M = cos_lat1*tan_lat2-sin_lat1*cos_dlon;
|
|
A = atan2(sin_dlon, M);
|
|
CT const sin_2A = sin(c2*A);
|
|
U = (f/ c2)*math::sqr(cos_lat1)*sin_2A;
|
|
}
|
|
|
|
CT B = c0;
|
|
CT V = c0;
|
|
if (math::equals(cos_lat1, c0))
|
|
{
|
|
if (sin_lat1 < c0)
|
|
{
|
|
B = pi;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CT const tan_lat1 = sin_lat1/cos_lat1;
|
|
CT const N = cos_lat2*tan_lat1-sin_lat2*cos_dlon;
|
|
B = atan2(sin_dlon, N);
|
|
CT const sin_2B = sin(c2*B);
|
|
V = (f/ c2)*math::sqr(cos_lat2)*sin_2B;
|
|
}
|
|
|
|
CT const T = d / sin_d;
|
|
|
|
// even with sin_d == 0 checked above if the second point
|
|
// is somewhere in the antipodal area T may still be great
|
|
// therefore dA and dB may be great and the resulting azimuths
|
|
// may be some more or less arbitrary angles
|
|
|
|
if (BOOST_GEOMETRY_CONDITION(CalcFwdAzimuth))
|
|
{
|
|
CT const dA = V*T - U;
|
|
result.azimuth = A - dA;
|
|
normalize_azimuth(result.azimuth, A, dA);
|
|
}
|
|
|
|
if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
|
|
{
|
|
CT const dB = -U*T + V;
|
|
if (B >= 0)
|
|
result.reverse_azimuth = pi - B - dB;
|
|
else
|
|
result.reverse_azimuth = -pi - B - dB;
|
|
normalize_azimuth(result.reverse_azimuth, B, dB);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
|
|
{
|
|
CT const b = CT(get_radius<2>(spheroid));
|
|
|
|
typedef differential_quantities<CT, EnableReducedLength, EnableGeodesicScale, 1> quantities;
|
|
quantities::apply(dlon, sin_lat1, cos_lat1, sin_lat2, cos_lat2,
|
|
result.azimuth, result.reverse_azimuth,
|
|
b, f,
|
|
result.reduced_length, result.geodesic_scale);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
static inline void normalize_azimuth(CT & azimuth, CT const& A, CT const& dA)
|
|
{
|
|
CT const c0 = 0;
|
|
|
|
if (A >= c0) // A indicates Eastern hemisphere
|
|
{
|
|
if (dA >= c0) // A altered towards 0
|
|
{
|
|
if (azimuth < c0)
|
|
{
|
|
azimuth = c0;
|
|
}
|
|
}
|
|
else // dA < 0, A altered towards pi
|
|
{
|
|
CT const pi = math::pi<CT>();
|
|
if (azimuth > pi)
|
|
{
|
|
azimuth = pi;
|
|
}
|
|
}
|
|
}
|
|
else // A indicates Western hemisphere
|
|
{
|
|
if (dA <= c0) // A altered towards 0
|
|
{
|
|
if (azimuth > c0)
|
|
{
|
|
azimuth = c0;
|
|
}
|
|
}
|
|
else // dA > 0, A altered towards -pi
|
|
{
|
|
CT const minus_pi = -math::pi<CT>();
|
|
if (azimuth < minus_pi)
|
|
{
|
|
azimuth = minus_pi;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
}}} // namespace boost::geometry::formula
|
|
|
|
|
|
#endif // BOOST_GEOMETRY_FORMULAS_ANDOYER_INVERSE_HPP
|