libcarla/include/system/boost/geometry/algorithms/is_convex.hpp
2024-10-18 13:19:59 +08:00

341 lines
11 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2015 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2017-2021.
// Modifications copyright (c) 2017-2021 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_IS_CONVEX_HPP
#define BOOST_GEOMETRY_ALGORITHMS_IS_CONVEX_HPP
#include <boost/range/empty.hpp>
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
#include <boost/geometry/algorithms/detail/dummy_geometries.hpp>
#include <boost/geometry/algorithms/detail/visit.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/closure.hpp>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/coordinate_dimension.hpp>
#include <boost/geometry/core/exterior_ring.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/core/interior_rings.hpp>
#include <boost/geometry/core/visit.hpp>
#include <boost/geometry/geometries/adapted/boost_variant.hpp> // For backward compatibility
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/iterators/ever_circling_iterator.hpp>
#include <boost/geometry/strategies/default_strategy.hpp>
#include <boost/geometry/strategies/is_convex/cartesian.hpp>
#include <boost/geometry/strategies/is_convex/geographic.hpp>
#include <boost/geometry/strategies/is_convex/spherical.hpp>
#include <boost/geometry/views/detail/closed_clockwise_view.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace is_convex
{
struct ring_is_convex
{
template <typename Ring, typename Strategies>
static inline bool apply(Ring const& ring, Strategies const& strategies)
{
std::size_t n = boost::size(ring);
if (n < detail::minimum_ring_size<Ring>::value)
{
// (Too) small rings are considered as non-concave, is convex
return true;
}
// Walk in clockwise direction, consider ring as closed
// (though closure is not important in this algorithm - any dupped
// point is skipped)
using view_type = detail::closed_clockwise_view<Ring const>;
view_type const view(ring);
using it_type = geometry::ever_circling_range_iterator<view_type const>;
it_type previous(view);
it_type current(view);
current++;
auto const equals_strategy = strategies.relate(dummy_point(), dummy_point());
std::size_t index = 1;
while (equals::equals_point_point(*current, *previous, equals_strategy)
&& index < n)
{
current++;
index++;
}
if (index == n)
{
// All points are apparently equal
return true;
}
it_type next = current;
next++;
while (equals::equals_point_point(*current, *next, equals_strategy))
{
next++;
}
auto const side_strategy = strategies.side();
// We have now three different points on the ring
// Walk through all points, use a counter because of the ever-circling
// iterator
for (std::size_t i = 0; i < n; i++)
{
int const side = side_strategy.apply(*previous, *current, *next);
if (side == 1)
{
// Next is on the left side of clockwise ring:
// the piece is not convex
return false;
}
previous = current;
current = next;
// Advance next to next different point
// (because there are non-equal points, this loop is not infinite)
next++;
while (equals::equals_point_point(*current, *next, equals_strategy))
{
next++;
}
}
return true;
}
};
struct polygon_is_convex
{
template <typename Polygon, typename Strategies>
static inline bool apply(Polygon const& polygon, Strategies const& strategies)
{
return boost::empty(interior_rings(polygon))
&& ring_is_convex::apply(exterior_ring(polygon), strategies);
}
};
struct multi_polygon_is_convex
{
template <typename MultiPolygon, typename Strategies>
static inline bool apply(MultiPolygon const& multi_polygon, Strategies const& strategies)
{
auto const size = boost::size(multi_polygon);
return size == 0 // For consistency with ring_is_convex
|| (size == 1 && polygon_is_convex::apply(range::front(multi_polygon), strategies));
}
};
}} // namespace detail::is_convex
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
typename Geometry,
typename Tag = typename tag<Geometry>::type
>
struct is_convex
{
template <typename Strategies>
static inline bool apply(Geometry const&, Strategies const&)
{
// Convexity is not defined for PointLike and Linear geometries.
// We could implement this because the following definitions would work:
// - no line segment between two points on the interior or boundary ever goes outside.
// - convex_hull of geometry is equal to the original geometry, this implies equal
// topological dimension.
// For MultiPoint we'd have to check whether or not an arbitrary number of equal points
// is stored.
// MultiPolygon we'd have to check for continuous chain of Linestrings which would require
// the use of relate(pt, seg) or distance(pt, pt) strategy.
return false;
}
};
template <typename Box>
struct is_convex<Box, box_tag>
{
template <typename Strategies>
static inline bool apply(Box const& , Strategies const& )
{
// Any box is convex (TODO: consider spherical boxes)
// TODO: in spherical and geographic the answer would be "false" most of the time.
// Assuming that:
// - it even makes sense to consider Box in spherical and geographic in this context
// because it's not a Polygon, e.g. it can degenerate to a Point.
// - line segments are defined by geodesics and box edges by parallels and meridians
// - we use this definition: A convex polygon is a simple polygon (not self-intersecting)
// in which no line segment between two points on the boundary ever goes outside the
// polygon.
// Then a geodesic segment would go into the exterior of a Box for all horizontal edges
// of a Box unless it was one of the poles (edge degenerated to a point) or equator and
// longitude difference was lesser than 360 (otherwise depending on the CS there would be
// no solution or there would be two possible solutions - segment going through one of
// the poles, at least in case of oblate spheroid, either way the answer would probably
// be "false").
return true;
}
};
template <typename Ring>
struct is_convex<Ring, ring_tag> : detail::is_convex::ring_is_convex
{};
template <typename Polygon>
struct is_convex<Polygon, polygon_tag> : detail::is_convex::polygon_is_convex
{};
template <typename MultiPolygon>
struct is_convex<MultiPolygon, multi_polygon_tag> : detail::is_convex::multi_polygon_is_convex
{};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
namespace resolve_strategy {
template
<
typename Strategies,
bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategies>::value
>
struct is_convex
{
template <typename Geometry>
static bool apply(Geometry const& geometry, Strategies const& strategies)
{
return dispatch::is_convex<Geometry>::apply(geometry, strategies);
}
};
template <typename Strategy>
struct is_convex<Strategy, false>
{
template <typename Geometry>
static bool apply(Geometry const& geometry, Strategy const& strategy)
{
using strategies::is_convex::services::strategy_converter;
return dispatch::is_convex
<
Geometry
>::apply(geometry, strategy_converter<Strategy>::get(strategy));
}
};
template <>
struct is_convex<default_strategy, false>
{
template <typename Geometry>
static bool apply(Geometry const& geometry, default_strategy const& )
{
typedef typename strategies::is_convex::services::default_strategy
<
Geometry
>::type strategy_type;
return dispatch::is_convex<Geometry>::apply(geometry, strategy_type());
}
};
} // namespace resolve_strategy
namespace resolve_dynamic {
template <typename Geometry, typename Tag = typename tag<Geometry>::type>
struct is_convex
{
template <typename Strategy>
static bool apply(Geometry const& geometry, Strategy const& strategy)
{
concepts::check<Geometry>();
return resolve_strategy::is_convex<Strategy>::apply(geometry, strategy);
}
};
template <typename Geometry>
struct is_convex<Geometry, dynamic_geometry_tag>
{
template <typename Strategy>
static inline bool apply(Geometry const& geometry, Strategy const& strategy)
{
bool result = false;
traits::visit<Geometry>::apply([&](auto const& g)
{
result = is_convex<util::remove_cref_t<decltype(g)>>::apply(g, strategy);
}, geometry);
return result;
}
};
// NOTE: This is a simple implementation checking if a GC contains single convex geometry.
// Technically a GC could store e.g. polygons touching with edges and together creating a convex
// region. To check this we'd require relate() strategy and the algorithm would be quite complex.
template <typename Geometry>
struct is_convex<Geometry, geometry_collection_tag>
{
template <typename Strategy>
static inline bool apply(Geometry const& geometry, Strategy const& strategy)
{
bool result = false;
bool is_first = true;
detail::visit_breadth_first([&](auto const& g)
{
result = is_first
&& is_convex<util::remove_cref_t<decltype(g)>>::apply(g, strategy);
is_first = false;
return result;
}, geometry);
return result;
}
};
} // namespace resolve_dynamic
// TODO: documentation / qbk
template<typename Geometry>
inline bool is_convex(Geometry const& geometry)
{
return resolve_dynamic::is_convex
<
Geometry
>::apply(geometry, geometry::default_strategy());
}
// TODO: documentation / qbk
template<typename Geometry, typename Strategy>
inline bool is_convex(Geometry const& geometry, Strategy const& strategy)
{
return resolve_dynamic::is_convex<Geometry>::apply(geometry, strategy);
}
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_IS_CONVEX_HPP