libcarla/include/system/boost/numeric/ublas/opencl/matrix.hpp
2024-10-18 13:19:59 +08:00

124 lines
3.8 KiB
C++

// Boost.uBLAS
//
// Copyright (c) 2018 Fady Essam
// Copyright (c) 2018 Stefan Seefeld
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or
// copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef boost_numeric_ublas_opencl_matrix_hpp_
#define boost_numeric_ublas_opencl_matrix_hpp_
#include <boost/numeric/ublas/opencl/library.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/functional.hpp>
#include <boost/compute/core.hpp>
#include <boost/compute/algorithm.hpp>
#include <boost/compute/buffer.hpp>
namespace boost { namespace numeric { namespace ublas { namespace opencl {
class storage;
namespace compute = boost::compute;
} // namespace opencl
template<class T, class L>
class matrix<T, L, opencl::storage> : public matrix_container<matrix<T, L, opencl::storage> >
{
typedef typename boost::compute::buffer_allocator<T>::size_type size_type;
typedef L layout_type;
typedef matrix<T, L, opencl::storage> self_type;
public:
matrix()
: matrix_container<self_type>(),
size1_(0), size2_(0), data_() , device_()
{}
matrix(size_type size1, size_type size2, compute::context c)
: matrix_container<self_type>(),
size1_(size1), size2_(size2), device_(c.get_device())
{
compute::buffer_allocator<T> allocator(c);
data_ = allocator.allocate(layout_type::storage_size(size1, size2)).get_buffer();
}
matrix(size_type size1, size_type size2, T const &value, compute::command_queue &q)
: matrix_container<self_type>(),
size1_(size1), size2_(size2), device_(q.get_device())
{
compute::buffer_allocator<T> allocator(q.get_context());
data_ = allocator.allocate(layout_type::storage_size(size1, size2)).get_buffer();
compute::fill(this->begin(), this->end(), value, q);
q.finish();
}
template <typename A>
matrix(matrix<T, L, A> const &m, compute::command_queue &queue)
: matrix(m.size1(), m.size2(), queue.get_context())
{
this->from_host(m, queue);
}
size_type size1() const { return size1_;}
size_type size2() const { return size2_;}
const compute::buffer_iterator<T> begin() const { return compute::make_buffer_iterator<T>(data_);}
compute::buffer_iterator<T> begin() { return compute::make_buffer_iterator<T>(data_);}
compute::buffer_iterator<T> end() { return compute::make_buffer_iterator<T>(data_, layout_type::storage_size(size1_, size2_));}
const compute::buffer_iterator<T> end() const { return compute::make_buffer_iterator<T>(data_, layout_type::storage_size(size1_, size2_));}
const compute::device &device() const { return device_;}
compute::device &device() { return device_;}
void fill(T value, compute::command_queue &queue)
{
assert(device_ == queue.get_device());
compute::fill(this->begin(), this->end(), value, queue);
queue.finish();
}
/** Copies a matrix to a device
* \param m is a matrix that is not on the device _device and it is copied to it
* \param queue is the command queue that will execute the operation
*/
template<class A>
void from_host(ublas::matrix<T, L, A> const &m, compute::command_queue &queue)
{
assert(device_ == queue.get_device());
compute::copy(m.data().begin(),
m.data().end(),
this->begin(),
queue);
queue.finish();
}
/** Copies a matrix from a device
* \param m is a matrix that will be reized to (size1_,size2) and the values of (*this) will be copied in it
* \param queue is the command queue that will execute the operation
*/
template<class A>
void to_host(ublas::matrix<T, L, A> &m, compute::command_queue &queue) const
{
assert(device_ == queue.get_device());
compute::copy(this->begin(),
this->end(),
m.data().begin(),
queue);
queue.finish();
}
private:
size_type size1_;
size_type size2_;
compute::buffer data_;
compute::device device_;
};
}}}
#endif