libcarla/include/system/boost/math/statistics/detail/single_pass.hpp
2024-10-18 13:19:59 +08:00

402 lines
12 KiB
C++

// (C) Copyright Nick Thompson 2018
// (C) Copyright Matt Borland 2020
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_DETAIL_SINGLE_PASS_HPP
#define BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_DETAIL_SINGLE_PASS_HPP
#include <boost/math/tools/config.hpp>
#include <boost/math/tools/assert.hpp>
#include <tuple>
#include <iterator>
#include <type_traits>
#include <cmath>
#include <algorithm>
#include <valarray>
#include <stdexcept>
#include <functional>
#include <vector>
#ifdef BOOST_HAS_THREADS
#include <future>
#include <thread>
#endif
namespace boost { namespace math { namespace statistics { namespace detail {
template<typename ReturnType, typename ForwardIterator>
ReturnType mean_sequential_impl(ForwardIterator first, ForwardIterator last)
{
const std::size_t elements {static_cast<std::size_t>(std::distance(first, last))};
std::valarray<ReturnType> mu {0, 0, 0, 0};
std::valarray<ReturnType> temp {0, 0, 0, 0};
ReturnType i {1};
const ForwardIterator end {std::next(first, elements - (elements % 4))};
ForwardIterator it {first};
while(it != end)
{
const ReturnType inv {ReturnType(1) / i};
temp = {static_cast<ReturnType>(*it++), static_cast<ReturnType>(*it++), static_cast<ReturnType>(*it++), static_cast<ReturnType>(*it++)};
temp -= mu;
mu += (temp *= inv);
i += 1;
}
const ReturnType num1 {ReturnType(elements - (elements % 4))/ReturnType(4)};
const ReturnType num2 {num1 + ReturnType(elements % 4)};
while(it != last)
{
mu[3] += (*it-mu[3])/i;
i += 1;
++it;
}
return (num1 * std::valarray<ReturnType>(mu[std::slice(0,3,1)]).sum() + num2 * mu[3]) / ReturnType(elements);
}
// Higham, Accuracy and Stability, equation 1.6a and 1.6b:
// Calculates Mean, M2, and variance
template<typename ReturnType, typename ForwardIterator>
ReturnType variance_sequential_impl(ForwardIterator first, ForwardIterator last)
{
using Real = typename std::tuple_element<0, ReturnType>::type;
Real M = *first;
Real Q = 0;
Real k = 2;
Real M2 = 0;
std::size_t n = 1;
for(auto it = std::next(first); it != last; ++it)
{
Real tmp = (*it - M) / k;
Real delta_1 = *it - M;
Q += k*(k-1)*tmp*tmp;
M += tmp;
k += 1;
Real delta_2 = *it - M;
M2 += delta_1 * delta_2;
++n;
}
return std::make_tuple(M, M2, Q/(k-1), Real(n));
}
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Higher-order_statistics
template<typename ReturnType, typename ForwardIterator>
ReturnType first_four_moments_sequential_impl(ForwardIterator first, ForwardIterator last)
{
using Real = typename std::tuple_element<0, ReturnType>::type;
using Size = typename std::tuple_element<4, ReturnType>::type;
Real M1 = *first;
Real M2 = 0;
Real M3 = 0;
Real M4 = 0;
Size n = 2;
for (auto it = std::next(first); it != last; ++it)
{
Real delta21 = *it - M1;
Real tmp = delta21/n;
M4 = M4 + tmp*(tmp*tmp*delta21*((n-1)*(n*n-3*n+3)) + 6*tmp*M2 - 4*M3);
M3 = M3 + tmp*((n-1)*(n-2)*delta21*tmp - 3*M2);
M2 = M2 + tmp*(n-1)*delta21;
M1 = M1 + tmp;
n += 1;
}
return std::make_tuple(M1, M2, M3, M4, n-1);
}
#ifdef BOOST_HAS_THREADS
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Higher-order_statistics
// EQN 3.1: https://www.osti.gov/servlets/purl/1426900
template<typename ReturnType, typename ForwardIterator>
ReturnType first_four_moments_parallel_impl(ForwardIterator first, ForwardIterator last)
{
using Real = typename std::tuple_element<0, ReturnType>::type;
const auto elements = std::distance(first, last);
const unsigned max_concurrency = std::thread::hardware_concurrency() == 0 ? 2u : std::thread::hardware_concurrency();
unsigned num_threads = 2u;
// Threading is faster for: 10 + 5.13e-3 N/j <= 5.13e-3N => N >= 10^4j/5.13(j-1).
const auto parallel_lower_bound = 10e4*max_concurrency/(5.13*(max_concurrency-1));
const auto parallel_upper_bound = 10e4*2/5.13; // j = 2
// https://lemire.me/blog/2020/01/30/cost-of-a-thread-in-c-under-linux/
if(elements < parallel_lower_bound)
{
return detail::first_four_moments_sequential_impl<ReturnType>(first, last);
}
else if(elements >= parallel_upper_bound)
{
num_threads = max_concurrency;
}
else
{
for(unsigned i = 3; i < max_concurrency; ++i)
{
if(parallel_lower_bound < 10e4*i/(5.13*(i-1)))
{
num_threads = i;
break;
}
}
}
std::vector<std::future<ReturnType>> future_manager;
const auto elements_per_thread = std::ceil(static_cast<double>(elements) / num_threads);
auto it = first;
for(std::size_t i {}; i < num_threads - 1; ++i)
{
future_manager.emplace_back(std::async(std::launch::async | std::launch::deferred, [it, elements_per_thread]() -> ReturnType
{
return first_four_moments_sequential_impl<ReturnType>(it, std::next(it, elements_per_thread));
}));
it = std::next(it, elements_per_thread);
}
future_manager.emplace_back(std::async(std::launch::async | std::launch::deferred, [it, last]() -> ReturnType
{
return first_four_moments_sequential_impl<ReturnType>(it, last);
}));
auto temp = future_manager[0].get();
Real M1_a = std::get<0>(temp);
Real M2_a = std::get<1>(temp);
Real M3_a = std::get<2>(temp);
Real M4_a = std::get<3>(temp);
Real range_a = std::get<4>(temp);
for(std::size_t i = 1; i < future_manager.size(); ++i)
{
temp = future_manager[i].get();
Real M1_b = std::get<0>(temp);
Real M2_b = std::get<1>(temp);
Real M3_b = std::get<2>(temp);
Real M4_b = std::get<3>(temp);
Real range_b = std::get<4>(temp);
const Real n_ab = range_a + range_b;
const Real delta = M1_b - M1_a;
M1_a = (range_a * M1_a + range_b * M1_b) / n_ab;
M2_a = M2_a + M2_b + delta * delta * (range_a * range_b / n_ab);
M3_a = M3_a + M3_b + (delta * delta * delta) * range_a * range_b * (range_a - range_b) / (n_ab * n_ab)
+ Real(3) * delta * (range_a * M2_b - range_b * M2_a) / n_ab;
M4_a = M4_a + M4_b + (delta * delta * delta * delta) * range_a * range_b * (range_a * range_a - range_a * range_b + range_b * range_b) / (n_ab * n_ab * n_ab)
+ Real(6) * delta * delta * (range_a * range_a * M2_b + range_b * range_b * M2_a) / (n_ab * n_ab)
+ Real(4) * delta * (range_a * M3_b - range_b * M3_a) / n_ab;
range_a = n_ab;
}
return std::make_tuple(M1_a, M2_a, M3_a, M4_a, elements);
}
#endif // BOOST_HAS_THREADS
// Follows equation 1.5 of:
// https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf
template<typename ReturnType, typename ForwardIterator>
ReturnType skewness_sequential_impl(ForwardIterator first, ForwardIterator last)
{
using std::sqrt;
BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute skewness.");
ReturnType M1 = *first;
ReturnType M2 = 0;
ReturnType M3 = 0;
ReturnType n = 2;
for (auto it = std::next(first); it != last; ++it)
{
ReturnType delta21 = *it - M1;
ReturnType tmp = delta21/n;
M3 += tmp*((n-1)*(n-2)*delta21*tmp - 3*M2);
M2 += tmp*(n-1)*delta21;
M1 += tmp;
n += 1;
}
ReturnType var = M2/(n-1);
if (var == 0)
{
// The limit is technically undefined, but the interpretation here is clear:
// A constant dataset has no skewness.
return ReturnType(0);
}
ReturnType skew = M3/(M2*sqrt(var));
return skew;
}
template<typename ReturnType, typename ForwardIterator>
ReturnType gini_coefficient_sequential_impl(ForwardIterator first, ForwardIterator last)
{
ReturnType i = 1;
ReturnType num = 0;
ReturnType denom = 0;
for(auto it = first; it != last; ++it)
{
num += *it*i;
denom += *it;
++i;
}
// If the l1 norm is zero, all elements are zero, so every element is the same.
if(denom == 0)
{
return ReturnType(0);
}
else
{
return ((2*num)/denom - i)/(i-1);
}
}
template<typename ReturnType, typename ForwardIterator>
ReturnType gini_range_fraction(ForwardIterator first, ForwardIterator last, std::size_t starting_index)
{
using Real = typename std::tuple_element<0, ReturnType>::type;
std::size_t i = starting_index + 1;
Real num = 0;
Real denom = 0;
for(auto it = first; it != last; ++it)
{
num += *it*i;
denom += *it;
++i;
}
return std::make_tuple(num, denom, i);
}
#ifdef BOOST_HAS_THREADS
template<typename ReturnType, typename ExecutionPolicy, typename ForwardIterator>
ReturnType gini_coefficient_parallel_impl(ExecutionPolicy&&, ForwardIterator first, ForwardIterator last)
{
using range_tuple = std::tuple<ReturnType, ReturnType, std::size_t>;
const auto elements = std::distance(first, last);
const unsigned max_concurrency = std::thread::hardware_concurrency() == 0 ? 2u : std::thread::hardware_concurrency();
unsigned num_threads = 2u;
// Threading is faster for: 10 + 10.12e-3 N/j <= 10.12e-3N => N >= 10^4j/10.12(j-1).
const auto parallel_lower_bound = 10e4*max_concurrency/(10.12*(max_concurrency-1));
const auto parallel_upper_bound = 10e4*2/10.12; // j = 2
// https://lemire.me/blog/2020/01/30/cost-of-a-thread-in-c-under-linux/
if(elements < parallel_lower_bound)
{
return gini_coefficient_sequential_impl<ReturnType>(first, last);
}
else if(elements >= parallel_upper_bound)
{
num_threads = max_concurrency;
}
else
{
for(unsigned i = 3; i < max_concurrency; ++i)
{
if(parallel_lower_bound < 10e4*i/(10.12*(i-1)))
{
num_threads = i;
break;
}
}
}
std::vector<std::future<range_tuple>> future_manager;
const auto elements_per_thread = std::ceil(static_cast<double>(elements) / num_threads);
auto it = first;
for(std::size_t i {}; i < num_threads - 1; ++i)
{
future_manager.emplace_back(std::async(std::launch::async | std::launch::deferred, [it, elements_per_thread, i]() -> range_tuple
{
return gini_range_fraction<range_tuple>(it, std::next(it, elements_per_thread), i*elements_per_thread);
}));
it = std::next(it, elements_per_thread);
}
future_manager.emplace_back(std::async(std::launch::async | std::launch::deferred, [it, last, num_threads, elements_per_thread]() -> range_tuple
{
return gini_range_fraction<range_tuple>(it, last, (num_threads - 1)*elements_per_thread);
}));
ReturnType num = 0;
ReturnType denom = 0;
for(std::size_t i = 0; i < future_manager.size(); ++i)
{
auto temp = future_manager[i].get();
num += std::get<0>(temp);
denom += std::get<1>(temp);
}
// If the l1 norm is zero, all elements are zero, so every element is the same.
if(denom == 0)
{
return ReturnType(0);
}
else
{
return ((2*num)/denom - elements)/(elements-1);
}
}
#endif // BOOST_HAS_THREADS
template<typename ForwardIterator, typename OutputIterator>
OutputIterator mode_impl(ForwardIterator first, ForwardIterator last, OutputIterator output)
{
using Z = typename std::iterator_traits<ForwardIterator>::value_type;
using Size = typename std::iterator_traits<ForwardIterator>::difference_type;
std::vector<Z> modes {};
modes.reserve(16);
Size max_counter {0};
while(first != last)
{
Size current_count {0};
ForwardIterator end_it {first};
while(end_it != last && *end_it == *first)
{
++current_count;
++end_it;
}
if(current_count > max_counter)
{
modes.resize(1);
modes[0] = *first;
max_counter = current_count;
}
else if(current_count == max_counter)
{
modes.emplace_back(*first);
}
first = end_it;
}
return std::move(modes.begin(), modes.end(), output);
}
}}}}
#endif // BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_DETAIL_SINGLE_PASS_HPP