219 lines
4.7 KiB
C++
219 lines
4.7 KiB
C++
// (C) Copyright Nick Thompson 2019.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_MATH_SPECIAL_CARDINAL_B_SPLINE_HPP
|
|
#define BOOST_MATH_SPECIAL_CARDINAL_B_SPLINE_HPP
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <type_traits>
|
|
|
|
namespace boost { namespace math {
|
|
|
|
namespace detail {
|
|
|
|
template<class Real>
|
|
inline Real B1(Real x)
|
|
{
|
|
if (x < 0)
|
|
{
|
|
return B1(-x);
|
|
}
|
|
if (x < Real(1))
|
|
{
|
|
return 1 - x;
|
|
}
|
|
return Real(0);
|
|
}
|
|
}
|
|
|
|
template<unsigned n, typename Real>
|
|
Real cardinal_b_spline(Real x) {
|
|
static_assert(!std::is_integral<Real>::value, "Does not work with integral types.");
|
|
|
|
if (x < 0) {
|
|
// All B-splines are even functions:
|
|
return cardinal_b_spline<n, Real>(-x);
|
|
}
|
|
|
|
if (n==0)
|
|
{
|
|
if (x < Real(1)/Real(2)) {
|
|
return Real(1);
|
|
}
|
|
else if (x == Real(1)/Real(2)) {
|
|
return Real(1)/Real(2);
|
|
}
|
|
else {
|
|
return Real(0);
|
|
}
|
|
}
|
|
|
|
if (n==1)
|
|
{
|
|
return detail::B1(x);
|
|
}
|
|
|
|
Real supp_max = (n+1)/Real(2);
|
|
if (x >= supp_max)
|
|
{
|
|
return Real(0);
|
|
}
|
|
|
|
// Fill v with values of B1:
|
|
// At most two of these terms are nonzero, and at least 1.
|
|
// There is only one non-zero term when n is odd and x = 0.
|
|
std::array<Real, n> v;
|
|
Real z = x + 1 - supp_max;
|
|
for (unsigned i = 0; i < n; ++i)
|
|
{
|
|
v[i] = detail::B1(z);
|
|
z += 1;
|
|
}
|
|
|
|
Real smx = supp_max - x;
|
|
for (unsigned j = 2; j <= n; ++j)
|
|
{
|
|
Real a = (j + 1 - smx);
|
|
Real b = smx;
|
|
for(unsigned k = 0; k <= n - j; ++k)
|
|
{
|
|
v[k] = (a*v[k+1] + b*v[k])/Real(j);
|
|
a += 1;
|
|
b -= 1;
|
|
}
|
|
}
|
|
|
|
return v[0];
|
|
}
|
|
|
|
|
|
template<unsigned n, typename Real>
|
|
Real cardinal_b_spline_prime(Real x)
|
|
{
|
|
static_assert(!std::is_integral<Real>::value, "Cardinal B-splines do not work with integer types.");
|
|
|
|
if (x < 0)
|
|
{
|
|
// All B-splines are even functions, so derivatives are odd:
|
|
return -cardinal_b_spline_prime<n, Real>(-x);
|
|
}
|
|
|
|
|
|
if (n==0)
|
|
{
|
|
// Kinda crazy but you get what you ask for!
|
|
if (x == Real(1)/Real(2))
|
|
{
|
|
return std::numeric_limits<Real>::infinity();
|
|
}
|
|
else
|
|
{
|
|
return Real(0);
|
|
}
|
|
}
|
|
|
|
if (n==1)
|
|
{
|
|
if (x==0)
|
|
{
|
|
return Real(0);
|
|
}
|
|
if (x==1)
|
|
{
|
|
return -Real(1)/Real(2);
|
|
}
|
|
return Real(-1);
|
|
}
|
|
|
|
|
|
Real supp_max = (n+1)/Real(2);
|
|
if (x >= supp_max)
|
|
{
|
|
return Real(0);
|
|
}
|
|
|
|
// Now we want to evaluate B_{n}(x), but stop at the second to last step and collect B_{n-1}(x+1/2) and B_{n-1}(x-1/2):
|
|
std::array<Real, n> v;
|
|
Real z = x + 1 - supp_max;
|
|
for (unsigned i = 0; i < n; ++i)
|
|
{
|
|
v[i] = detail::B1(z);
|
|
z += 1;
|
|
}
|
|
|
|
Real smx = supp_max - x;
|
|
for (unsigned j = 2; j <= n - 1; ++j)
|
|
{
|
|
Real a = (j + 1 - smx);
|
|
Real b = smx;
|
|
for(unsigned k = 0; k <= n - j; ++k)
|
|
{
|
|
v[k] = (a*v[k+1] + b*v[k])/Real(j);
|
|
a += 1;
|
|
b -= 1;
|
|
}
|
|
}
|
|
|
|
return v[1] - v[0];
|
|
}
|
|
|
|
|
|
template<unsigned n, typename Real>
|
|
Real cardinal_b_spline_double_prime(Real x)
|
|
{
|
|
static_assert(!std::is_integral<Real>::value, "Cardinal B-splines do not work with integer types.");
|
|
static_assert(n >= 3, "n>=3 for second derivatives of cardinal B-splines is required.");
|
|
|
|
if (x < 0)
|
|
{
|
|
// All B-splines are even functions, so second derivatives are even:
|
|
return cardinal_b_spline_double_prime<n, Real>(-x);
|
|
}
|
|
|
|
|
|
Real supp_max = (n+1)/Real(2);
|
|
if (x >= supp_max)
|
|
{
|
|
return Real(0);
|
|
}
|
|
|
|
// Now we want to evaluate B_{n}(x), but stop at the second to last step and collect B_{n-1}(x+1/2) and B_{n-1}(x-1/2):
|
|
std::array<Real, n> v;
|
|
Real z = x + 1 - supp_max;
|
|
for (unsigned i = 0; i < n; ++i)
|
|
{
|
|
v[i] = detail::B1(z);
|
|
z += 1;
|
|
}
|
|
|
|
Real smx = supp_max - x;
|
|
for (unsigned j = 2; j <= n - 2; ++j)
|
|
{
|
|
Real a = (j + 1 - smx);
|
|
Real b = smx;
|
|
for(unsigned k = 0; k <= n - j; ++k)
|
|
{
|
|
v[k] = (a*v[k+1] + b*v[k])/Real(j);
|
|
a += 1;
|
|
b -= 1;
|
|
}
|
|
}
|
|
|
|
return v[2] - 2*v[1] + v[0];
|
|
}
|
|
|
|
|
|
template<unsigned n, class Real>
|
|
Real forward_cardinal_b_spline(Real x)
|
|
{
|
|
static_assert(!std::is_integral<Real>::value, "Cardinal B-splines do not work with integral types.");
|
|
return cardinal_b_spline<n>(x - (n+1)/Real(2));
|
|
}
|
|
|
|
}}
|
|
#endif
|