libcarla/include/system/boost/math/special_functions/cardinal_b_spline.hpp
2024-10-18 13:19:59 +08:00

219 lines
4.7 KiB
C++

// (C) Copyright Nick Thompson 2019.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SPECIAL_CARDINAL_B_SPLINE_HPP
#define BOOST_MATH_SPECIAL_CARDINAL_B_SPLINE_HPP
#include <array>
#include <cmath>
#include <limits>
#include <type_traits>
namespace boost { namespace math {
namespace detail {
template<class Real>
inline Real B1(Real x)
{
if (x < 0)
{
return B1(-x);
}
if (x < Real(1))
{
return 1 - x;
}
return Real(0);
}
}
template<unsigned n, typename Real>
Real cardinal_b_spline(Real x) {
static_assert(!std::is_integral<Real>::value, "Does not work with integral types.");
if (x < 0) {
// All B-splines are even functions:
return cardinal_b_spline<n, Real>(-x);
}
if (n==0)
{
if (x < Real(1)/Real(2)) {
return Real(1);
}
else if (x == Real(1)/Real(2)) {
return Real(1)/Real(2);
}
else {
return Real(0);
}
}
if (n==1)
{
return detail::B1(x);
}
Real supp_max = (n+1)/Real(2);
if (x >= supp_max)
{
return Real(0);
}
// Fill v with values of B1:
// At most two of these terms are nonzero, and at least 1.
// There is only one non-zero term when n is odd and x = 0.
std::array<Real, n> v;
Real z = x + 1 - supp_max;
for (unsigned i = 0; i < n; ++i)
{
v[i] = detail::B1(z);
z += 1;
}
Real smx = supp_max - x;
for (unsigned j = 2; j <= n; ++j)
{
Real a = (j + 1 - smx);
Real b = smx;
for(unsigned k = 0; k <= n - j; ++k)
{
v[k] = (a*v[k+1] + b*v[k])/Real(j);
a += 1;
b -= 1;
}
}
return v[0];
}
template<unsigned n, typename Real>
Real cardinal_b_spline_prime(Real x)
{
static_assert(!std::is_integral<Real>::value, "Cardinal B-splines do not work with integer types.");
if (x < 0)
{
// All B-splines are even functions, so derivatives are odd:
return -cardinal_b_spline_prime<n, Real>(-x);
}
if (n==0)
{
// Kinda crazy but you get what you ask for!
if (x == Real(1)/Real(2))
{
return std::numeric_limits<Real>::infinity();
}
else
{
return Real(0);
}
}
if (n==1)
{
if (x==0)
{
return Real(0);
}
if (x==1)
{
return -Real(1)/Real(2);
}
return Real(-1);
}
Real supp_max = (n+1)/Real(2);
if (x >= supp_max)
{
return Real(0);
}
// Now we want to evaluate B_{n}(x), but stop at the second to last step and collect B_{n-1}(x+1/2) and B_{n-1}(x-1/2):
std::array<Real, n> v;
Real z = x + 1 - supp_max;
for (unsigned i = 0; i < n; ++i)
{
v[i] = detail::B1(z);
z += 1;
}
Real smx = supp_max - x;
for (unsigned j = 2; j <= n - 1; ++j)
{
Real a = (j + 1 - smx);
Real b = smx;
for(unsigned k = 0; k <= n - j; ++k)
{
v[k] = (a*v[k+1] + b*v[k])/Real(j);
a += 1;
b -= 1;
}
}
return v[1] - v[0];
}
template<unsigned n, typename Real>
Real cardinal_b_spline_double_prime(Real x)
{
static_assert(!std::is_integral<Real>::value, "Cardinal B-splines do not work with integer types.");
static_assert(n >= 3, "n>=3 for second derivatives of cardinal B-splines is required.");
if (x < 0)
{
// All B-splines are even functions, so second derivatives are even:
return cardinal_b_spline_double_prime<n, Real>(-x);
}
Real supp_max = (n+1)/Real(2);
if (x >= supp_max)
{
return Real(0);
}
// Now we want to evaluate B_{n}(x), but stop at the second to last step and collect B_{n-1}(x+1/2) and B_{n-1}(x-1/2):
std::array<Real, n> v;
Real z = x + 1 - supp_max;
for (unsigned i = 0; i < n; ++i)
{
v[i] = detail::B1(z);
z += 1;
}
Real smx = supp_max - x;
for (unsigned j = 2; j <= n - 2; ++j)
{
Real a = (j + 1 - smx);
Real b = smx;
for(unsigned k = 0; k <= n - j; ++k)
{
v[k] = (a*v[k+1] + b*v[k])/Real(j);
a += 1;
b -= 1;
}
}
return v[2] - 2*v[1] + v[0];
}
template<unsigned n, class Real>
Real forward_cardinal_b_spline(Real x)
{
static_assert(!std::is_integral<Real>::value, "Cardinal B-splines do not work with integral types.");
return cardinal_b_spline<n>(x - (n+1)/Real(2));
}
}}
#endif