185 lines
5.2 KiB
C++
185 lines
5.2 KiB
C++
// Copyright 2015-2018 Hans Dembinski
|
|
//
|
|
// Distributed under the Boost Software License, version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_HISTOGRAM_ACCUMULATORS_MEAN_HPP
|
|
#define BOOST_HISTOGRAM_ACCUMULATORS_MEAN_HPP
|
|
|
|
#include <boost/core/nvp.hpp>
|
|
#include <boost/histogram/detail/square.hpp>
|
|
#include <boost/histogram/fwd.hpp> // for mean<>
|
|
#include <boost/throw_exception.hpp>
|
|
#include <cassert>
|
|
#include <stdexcept>
|
|
#include <type_traits>
|
|
|
|
namespace boost {
|
|
namespace histogram {
|
|
namespace accumulators {
|
|
|
|
/** Calculates mean and variance of sample.
|
|
|
|
Uses Welfords's incremental algorithm to improve the numerical
|
|
stability of mean and variance computation.
|
|
*/
|
|
template <class ValueType>
|
|
class mean {
|
|
public:
|
|
using value_type = ValueType;
|
|
using const_reference = const value_type&;
|
|
|
|
mean() = default;
|
|
|
|
/// Allow implicit conversion from mean<T>.
|
|
template <class T>
|
|
mean(const mean<T>& o) noexcept
|
|
: sum_{o.sum_}, mean_{o.mean_}, sum_of_deltas_squared_{o.sum_of_deltas_squared_} {}
|
|
|
|
/// Initialize to external count, mean, and variance.
|
|
mean(const_reference n, const_reference mean, const_reference variance) noexcept
|
|
: sum_(n), mean_(mean), sum_of_deltas_squared_(variance * (n - 1)) {}
|
|
|
|
/// Insert sample x.
|
|
void operator()(const_reference x) noexcept {
|
|
sum_ += static_cast<value_type>(1);
|
|
const auto delta = x - mean_;
|
|
mean_ += delta / sum_;
|
|
sum_of_deltas_squared_ += delta * (x - mean_);
|
|
}
|
|
|
|
/// Insert sample x with weight w.
|
|
void operator()(const weight_type<value_type>& w, const_reference x) noexcept {
|
|
sum_ += w.value;
|
|
const auto delta = x - mean_;
|
|
mean_ += w.value * delta / sum_;
|
|
sum_of_deltas_squared_ += w.value * delta * (x - mean_);
|
|
}
|
|
|
|
/// Add another mean accumulator.
|
|
mean& operator+=(const mean& rhs) noexcept {
|
|
if (rhs.sum_ == 0) return *this;
|
|
|
|
/*
|
|
sum_of_deltas_squared
|
|
= sum_i (x_i - mu)^2
|
|
= sum_i (x_i - mu)^2 + sum_k (x_k - mu)^2
|
|
= sum_i (x_i - mu1 + (mu1 - mu))^2 + sum_k (x_k - mu2 + (mu2 - mu))^2
|
|
|
|
first part:
|
|
sum_i (x_i - mu1 + (mu1 - mu))^2
|
|
= sum_i (x_i - mu1)^2 + n1 (mu1 - mu))^2 + 2 (mu1 - mu) sum_i (x_i - mu1)
|
|
= sum_i (x_i - mu1)^2 + n1 (mu1 - mu))^2
|
|
since sum_i (x_i - mu1) = n1 mu1 - n1 mu1 = 0
|
|
|
|
Putting it together:
|
|
sum_of_deltas_squared
|
|
= sum_of_deltas_squared_1 + n1 (mu1 - mu))^2
|
|
+ sum_of_deltas_squared_2 + n2 (mu2 - mu))^2
|
|
*/
|
|
|
|
const auto n1 = sum_;
|
|
const auto mu1 = mean_;
|
|
const auto n2 = rhs.sum_;
|
|
const auto mu2 = rhs.mean_;
|
|
|
|
sum_ += rhs.sum_;
|
|
mean_ = (n1 * mu1 + n2 * mu2) / sum_;
|
|
sum_of_deltas_squared_ += rhs.sum_of_deltas_squared_;
|
|
sum_of_deltas_squared_ += n1 * detail::square(mean_ - mu1);
|
|
sum_of_deltas_squared_ += n2 * detail::square(mean_ - mu2);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/** Scale by value.
|
|
|
|
This acts as if all samples were scaled by the value.
|
|
*/
|
|
mean& operator*=(const_reference s) noexcept {
|
|
mean_ *= s;
|
|
sum_of_deltas_squared_ *= s * s;
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const mean& rhs) const noexcept {
|
|
return sum_ == rhs.sum_ && mean_ == rhs.mean_ &&
|
|
sum_of_deltas_squared_ == rhs.sum_of_deltas_squared_;
|
|
}
|
|
|
|
bool operator!=(const mean& rhs) const noexcept { return !operator==(rhs); }
|
|
|
|
/** Return how many samples were accumulated.
|
|
|
|
count() should be used to check whether value() and variance() are defined,
|
|
see documentation of value() and variance(). count() can be used to compute
|
|
the variance of the mean by dividing variance() by count().
|
|
*/
|
|
const_reference count() const noexcept { return sum_; }
|
|
|
|
/** Return mean value of accumulated samples.
|
|
|
|
The result is undefined, if `count() < 1`.
|
|
*/
|
|
const_reference value() const noexcept { return mean_; }
|
|
|
|
/** Return variance of accumulated samples.
|
|
|
|
The result is undefined, if `count() < 2`.
|
|
*/
|
|
value_type variance() const noexcept { return sum_of_deltas_squared_ / (sum_ - 1); }
|
|
|
|
template <class Archive>
|
|
void serialize(Archive& ar, unsigned version) {
|
|
if (version == 0) {
|
|
// read only
|
|
std::size_t sum;
|
|
ar& make_nvp("sum", sum);
|
|
sum_ = static_cast<value_type>(sum);
|
|
} else {
|
|
ar& make_nvp("sum", sum_);
|
|
}
|
|
ar& make_nvp("mean", mean_);
|
|
ar& make_nvp("sum_of_deltas_squared", sum_of_deltas_squared_);
|
|
}
|
|
|
|
private:
|
|
value_type sum_{};
|
|
value_type mean_{};
|
|
value_type sum_of_deltas_squared_{};
|
|
};
|
|
|
|
} // namespace accumulators
|
|
} // namespace histogram
|
|
} // namespace boost
|
|
|
|
#ifndef BOOST_HISTOGRAM_DOXYGEN_INVOKED
|
|
|
|
namespace boost {
|
|
namespace serialization {
|
|
|
|
template <class T>
|
|
struct version;
|
|
|
|
// version 1 for boost::histogram::accumulators::mean<T>
|
|
template <class T>
|
|
struct version<boost::histogram::accumulators::mean<T>> : std::integral_constant<int, 1> {
|
|
};
|
|
|
|
} // namespace serialization
|
|
} // namespace boost
|
|
|
|
namespace std {
|
|
template <class T, class U>
|
|
/// Specialization for boost::histogram::accumulators::mean.
|
|
struct common_type<boost::histogram::accumulators::mean<T>,
|
|
boost::histogram::accumulators::mean<U>> {
|
|
using type = boost::histogram::accumulators::mean<common_type_t<T, U>>;
|
|
};
|
|
} // namespace std
|
|
|
|
#endif
|
|
|
|
#endif
|