943 lines
28 KiB
C++
943 lines
28 KiB
C++
//=======================================================================
|
|
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
|
|
// Copyright 2004 The Trustees of Indiana University.
|
|
// Copyright 2007 University of Karlsruhe
|
|
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor,
|
|
// Jens Mueller
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0. (See
|
|
// accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//=======================================================================
|
|
#ifndef BOOST_GRAPH_LEDA_HPP
|
|
#define BOOST_GRAPH_LEDA_HPP
|
|
|
|
#include <boost/config.hpp>
|
|
#include <boost/iterator/iterator_facade.hpp>
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/graph/properties.hpp>
|
|
|
|
#include <LEDA/graph/graph.h>
|
|
#include <LEDA/graph/node_array.h>
|
|
#include <LEDA/graph/node_map.h>
|
|
|
|
// The functions and classes in this file allows the user to
|
|
// treat a LEDA GRAPH object as a boost graph "as is". No
|
|
// wrapper is needed for the GRAPH object.
|
|
|
|
// Warning: this implementation relies on partial specialization
|
|
// for the graph_traits class (so it won't compile with Visual C++)
|
|
|
|
// Warning: this implementation is in alpha and has not been tested
|
|
|
|
namespace boost
|
|
{
|
|
|
|
struct leda_graph_traversal_category : public virtual bidirectional_graph_tag,
|
|
public virtual adjacency_graph_tag,
|
|
public virtual vertex_list_graph_tag
|
|
{
|
|
};
|
|
|
|
template < class vtype, class etype >
|
|
struct graph_traits< leda::GRAPH< vtype, etype > >
|
|
{
|
|
typedef leda::node vertex_descriptor;
|
|
typedef leda::edge edge_descriptor;
|
|
|
|
class adjacency_iterator
|
|
: public iterator_facade< adjacency_iterator, leda::node,
|
|
bidirectional_traversal_tag, leda::node, const leda::node* >
|
|
{
|
|
public:
|
|
adjacency_iterator(
|
|
leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0)
|
|
: base(node), g(g)
|
|
{
|
|
}
|
|
|
|
private:
|
|
leda::node dereference() const { return leda::target(base); }
|
|
|
|
bool equal(const adjacency_iterator& other) const
|
|
{
|
|
return base == other.base;
|
|
}
|
|
|
|
void increment() { base = g->adj_succ(base); }
|
|
void decrement() { base = g->adj_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::GRAPH< vtype, etype >* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class out_edge_iterator
|
|
: public iterator_facade< out_edge_iterator, leda::edge,
|
|
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
|
|
{
|
|
public:
|
|
out_edge_iterator(
|
|
leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0)
|
|
: base(node), g(g)
|
|
{
|
|
}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const out_edge_iterator& other) const
|
|
{
|
|
return base == other.base;
|
|
}
|
|
|
|
void increment() { base = g->adj_succ(base); }
|
|
void decrement() { base = g->adj_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::GRAPH< vtype, etype >* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class in_edge_iterator
|
|
: public iterator_facade< in_edge_iterator, leda::edge,
|
|
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
|
|
{
|
|
public:
|
|
in_edge_iterator(
|
|
leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0)
|
|
: base(node), g(g)
|
|
{
|
|
}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const in_edge_iterator& other) const
|
|
{
|
|
return base == other.base;
|
|
}
|
|
|
|
void increment() { base = g->in_succ(base); }
|
|
void decrement() { base = g->in_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::GRAPH< vtype, etype >* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class vertex_iterator
|
|
: public iterator_facade< vertex_iterator, leda::node,
|
|
bidirectional_traversal_tag, const leda::node&, const leda::node* >
|
|
{
|
|
public:
|
|
vertex_iterator(
|
|
leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0)
|
|
: base(node), g(g)
|
|
{
|
|
}
|
|
|
|
private:
|
|
const leda::node& dereference() const { return base; }
|
|
|
|
bool equal(const vertex_iterator& other) const
|
|
{
|
|
return base == other.base;
|
|
}
|
|
|
|
void increment() { base = g->succ_node(base); }
|
|
void decrement() { base = g->pred_node(base); }
|
|
|
|
leda::node base;
|
|
const leda::GRAPH< vtype, etype >* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class edge_iterator
|
|
: public iterator_facade< edge_iterator, leda::edge,
|
|
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
|
|
{
|
|
public:
|
|
edge_iterator(
|
|
leda::edge edge = 0, const leda::GRAPH< vtype, etype >* g = 0)
|
|
: base(edge), g(g)
|
|
{
|
|
}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const edge_iterator& other) const
|
|
{
|
|
return base == other.base;
|
|
}
|
|
|
|
void increment() { base = g->succ_edge(base); }
|
|
void decrement() { base = g->pred_edge(base); }
|
|
|
|
leda::node base;
|
|
const leda::GRAPH< vtype, etype >* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
typedef directed_tag directed_category;
|
|
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
|
|
typedef leda_graph_traversal_category traversal_category;
|
|
typedef int vertices_size_type;
|
|
typedef int edges_size_type;
|
|
typedef int degree_size_type;
|
|
};
|
|
|
|
template <> struct graph_traits< leda::graph >
|
|
{
|
|
typedef leda::node vertex_descriptor;
|
|
typedef leda::edge edge_descriptor;
|
|
|
|
class adjacency_iterator
|
|
: public iterator_facade< adjacency_iterator, leda::node,
|
|
bidirectional_traversal_tag, leda::node, const leda::node* >
|
|
{
|
|
public:
|
|
adjacency_iterator(leda::edge edge = 0, const leda::graph* g = 0)
|
|
: base(edge), g(g)
|
|
{
|
|
}
|
|
|
|
private:
|
|
leda::node dereference() const { return leda::target(base); }
|
|
|
|
bool equal(const adjacency_iterator& other) const
|
|
{
|
|
return base == other.base;
|
|
}
|
|
|
|
void increment() { base = g->adj_succ(base); }
|
|
void decrement() { base = g->adj_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::graph* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class out_edge_iterator
|
|
: public iterator_facade< out_edge_iterator, leda::edge,
|
|
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
|
|
{
|
|
public:
|
|
out_edge_iterator(leda::edge edge = 0, const leda::graph* g = 0)
|
|
: base(edge), g(g)
|
|
{
|
|
}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const out_edge_iterator& other) const
|
|
{
|
|
return base == other.base;
|
|
}
|
|
|
|
void increment() { base = g->adj_succ(base); }
|
|
void decrement() { base = g->adj_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::graph* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class in_edge_iterator
|
|
: public iterator_facade< in_edge_iterator, leda::edge,
|
|
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
|
|
{
|
|
public:
|
|
in_edge_iterator(leda::edge edge = 0, const leda::graph* g = 0)
|
|
: base(edge), g(g)
|
|
{
|
|
}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const in_edge_iterator& other) const
|
|
{
|
|
return base == other.base;
|
|
}
|
|
|
|
void increment() { base = g->in_succ(base); }
|
|
void decrement() { base = g->in_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::graph* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class vertex_iterator
|
|
: public iterator_facade< vertex_iterator, leda::node,
|
|
bidirectional_traversal_tag, const leda::node&, const leda::node* >
|
|
{
|
|
public:
|
|
vertex_iterator(leda::node node = 0, const leda::graph* g = 0)
|
|
: base(node), g(g)
|
|
{
|
|
}
|
|
|
|
private:
|
|
const leda::node& dereference() const { return base; }
|
|
|
|
bool equal(const vertex_iterator& other) const
|
|
{
|
|
return base == other.base;
|
|
}
|
|
|
|
void increment() { base = g->succ_node(base); }
|
|
void decrement() { base = g->pred_node(base); }
|
|
|
|
leda::node base;
|
|
const leda::graph* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class edge_iterator
|
|
: public iterator_facade< edge_iterator, leda::edge,
|
|
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
|
|
{
|
|
public:
|
|
edge_iterator(leda::edge edge = 0, const leda::graph* g = 0)
|
|
: base(edge), g(g)
|
|
{
|
|
}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const edge_iterator& other) const
|
|
{
|
|
return base == other.base;
|
|
}
|
|
|
|
void increment() { base = g->succ_edge(base); }
|
|
void decrement() { base = g->pred_edge(base); }
|
|
|
|
leda::edge base;
|
|
const leda::graph* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
typedef directed_tag directed_category;
|
|
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
|
|
typedef leda_graph_traversal_category traversal_category;
|
|
typedef int vertices_size_type;
|
|
typedef int edges_size_type;
|
|
typedef int degree_size_type;
|
|
};
|
|
|
|
} // namespace boost
|
|
|
|
namespace boost
|
|
{
|
|
|
|
//===========================================================================
|
|
// functions for GRAPH<vtype,etype>
|
|
|
|
template < class vtype, class etype >
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor source(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor e,
|
|
const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return source(e);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor target(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor e,
|
|
const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return target(e);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
inline std::pair<
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_iterator,
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_iterator >
|
|
vertices(const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typedef
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_iterator
|
|
Iter;
|
|
return std::make_pair(Iter(g.first_node(), &g), Iter(0, &g));
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
inline std::pair<
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_iterator,
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_iterator >
|
|
edges(const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typedef typename graph_traits< leda::GRAPH< vtype, etype > >::edge_iterator
|
|
Iter;
|
|
return std::make_pair(Iter(g.first_edge(), &g), Iter(0, &g));
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
inline std::pair<
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator,
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator >
|
|
out_edges(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typedef
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator
|
|
Iter;
|
|
return std::make_pair(Iter(g.first_adj_edge(u, 0), &g), Iter(0, &g));
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
inline std::pair<
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator,
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator >
|
|
in_edges(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typedef
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator
|
|
Iter;
|
|
return std::make_pair(Iter(g.first_adj_edge(u, 1), &g), Iter(0, &g));
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
inline std::pair<
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::adjacency_iterator,
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::adjacency_iterator >
|
|
adjacent_vertices(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typedef
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::adjacency_iterator
|
|
Iter;
|
|
return std::make_pair(Iter(g.first_adj_edge(u, 0), &g), Iter(0, &g));
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertices_size_type
|
|
num_vertices(const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return g.number_of_nodes();
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::edges_size_type num_edges(
|
|
const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return g.number_of_edges();
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::degree_size_type
|
|
out_degree(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return g.outdeg(u);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::degree_size_type
|
|
in_degree(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return g.indeg(u);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::degree_size_type degree(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return g.outdeg(u) + g.indeg(u);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor
|
|
add_vertex(leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return g.new_node();
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor
|
|
add_vertex(const vtype& vp, leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return g.new_node(vp);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
void clear_vertex(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator ei,
|
|
ei_end;
|
|
for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ei++)
|
|
remove_edge(*ei);
|
|
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator iei,
|
|
iei_end;
|
|
for (boost::tie(iei, iei_end) = in_edges(u, g); iei != iei_end; iei++)
|
|
remove_edge(*iei);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
void remove_vertex(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
g.del_node(u);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
std::pair<
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor,
|
|
bool >
|
|
add_edge(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor v,
|
|
leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return std::make_pair(g.new_edge(u, v), true);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
std::pair<
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor,
|
|
bool >
|
|
add_edge(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor v,
|
|
const etype& et, leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return std::make_pair(g.new_edge(u, v, et), true);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
void remove_edge(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor v,
|
|
leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator i,
|
|
iend;
|
|
for (boost::tie(i, iend) = out_edges(u, g); i != iend; ++i)
|
|
if (target(*i, g) == v)
|
|
g.del_edge(*i);
|
|
}
|
|
|
|
template < class vtype, class etype >
|
|
void remove_edge(
|
|
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor e,
|
|
leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
g.del_edge(e);
|
|
}
|
|
|
|
//===========================================================================
|
|
// functions for graph (non-templated version)
|
|
|
|
graph_traits< leda::graph >::vertex_descriptor source(
|
|
graph_traits< leda::graph >::edge_descriptor e, const leda::graph& g)
|
|
{
|
|
return source(e);
|
|
}
|
|
|
|
graph_traits< leda::graph >::vertex_descriptor target(
|
|
graph_traits< leda::graph >::edge_descriptor e, const leda::graph& g)
|
|
{
|
|
return target(e);
|
|
}
|
|
|
|
inline std::pair< graph_traits< leda::graph >::vertex_iterator,
|
|
graph_traits< leda::graph >::vertex_iterator >
|
|
vertices(const leda::graph& g)
|
|
{
|
|
typedef graph_traits< leda::graph >::vertex_iterator Iter;
|
|
return std::make_pair(Iter(g.first_node(), &g), Iter(0, &g));
|
|
}
|
|
|
|
inline std::pair< graph_traits< leda::graph >::edge_iterator,
|
|
graph_traits< leda::graph >::edge_iterator >
|
|
edges(const leda::graph& g)
|
|
{
|
|
typedef graph_traits< leda::graph >::edge_iterator Iter;
|
|
return std::make_pair(Iter(g.first_edge(), &g), Iter(0, &g));
|
|
}
|
|
|
|
inline std::pair< graph_traits< leda::graph >::out_edge_iterator,
|
|
graph_traits< leda::graph >::out_edge_iterator >
|
|
out_edges(
|
|
graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
|
|
{
|
|
typedef graph_traits< leda::graph >::out_edge_iterator Iter;
|
|
return std::make_pair(Iter(g.first_adj_edge(u), &g), Iter(0, &g));
|
|
}
|
|
|
|
inline std::pair< graph_traits< leda::graph >::in_edge_iterator,
|
|
graph_traits< leda::graph >::in_edge_iterator >
|
|
in_edges(graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
|
|
{
|
|
typedef graph_traits< leda::graph >::in_edge_iterator Iter;
|
|
return std::make_pair(Iter(g.first_in_edge(u), &g), Iter(0, &g));
|
|
}
|
|
|
|
inline std::pair< graph_traits< leda::graph >::adjacency_iterator,
|
|
graph_traits< leda::graph >::adjacency_iterator >
|
|
adjacent_vertices(
|
|
graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
|
|
{
|
|
typedef graph_traits< leda::graph >::adjacency_iterator Iter;
|
|
return std::make_pair(Iter(g.first_adj_edge(u), &g), Iter(0, &g));
|
|
}
|
|
|
|
graph_traits< leda::graph >::vertices_size_type num_vertices(
|
|
const leda::graph& g)
|
|
{
|
|
return g.number_of_nodes();
|
|
}
|
|
|
|
graph_traits< leda::graph >::edges_size_type num_edges(const leda::graph& g)
|
|
{
|
|
return g.number_of_edges();
|
|
}
|
|
|
|
graph_traits< leda::graph >::degree_size_type out_degree(
|
|
graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
|
|
{
|
|
return g.outdeg(u);
|
|
}
|
|
|
|
graph_traits< leda::graph >::degree_size_type in_degree(
|
|
graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
|
|
{
|
|
return g.indeg(u);
|
|
}
|
|
|
|
graph_traits< leda::graph >::degree_size_type degree(
|
|
graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
|
|
{
|
|
return g.outdeg(u) + g.indeg(u);
|
|
}
|
|
|
|
graph_traits< leda::graph >::vertex_descriptor add_vertex(leda::graph& g)
|
|
{
|
|
return g.new_node();
|
|
}
|
|
|
|
void remove_edge(graph_traits< leda::graph >::vertex_descriptor u,
|
|
graph_traits< leda::graph >::vertex_descriptor v, leda::graph& g)
|
|
{
|
|
graph_traits< leda::graph >::out_edge_iterator i, iend;
|
|
for (boost::tie(i, iend) = out_edges(u, g); i != iend; ++i)
|
|
if (target(*i, g) == v)
|
|
g.del_edge(*i);
|
|
}
|
|
|
|
void remove_edge(graph_traits< leda::graph >::edge_descriptor e, leda::graph& g)
|
|
{
|
|
g.del_edge(e);
|
|
}
|
|
|
|
void clear_vertex(
|
|
graph_traits< leda::graph >::vertex_descriptor u, leda::graph& g)
|
|
{
|
|
graph_traits< leda::graph >::out_edge_iterator ei, ei_end;
|
|
for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ei++)
|
|
remove_edge(*ei, g);
|
|
|
|
graph_traits< leda::graph >::in_edge_iterator iei, iei_end;
|
|
for (boost::tie(iei, iei_end) = in_edges(u, g); iei != iei_end; iei++)
|
|
remove_edge(*iei, g);
|
|
}
|
|
|
|
void remove_vertex(
|
|
graph_traits< leda::graph >::vertex_descriptor u, leda::graph& g)
|
|
{
|
|
g.del_node(u);
|
|
}
|
|
|
|
std::pair< graph_traits< leda::graph >::edge_descriptor, bool > add_edge(
|
|
graph_traits< leda::graph >::vertex_descriptor u,
|
|
graph_traits< leda::graph >::vertex_descriptor v, leda::graph& g)
|
|
{
|
|
return std::make_pair(g.new_edge(u, v), true);
|
|
}
|
|
|
|
//===========================================================================
|
|
// property maps for GRAPH<vtype,etype>
|
|
|
|
class leda_graph_id_map : public put_get_helper< int, leda_graph_id_map >
|
|
{
|
|
public:
|
|
typedef readable_property_map_tag category;
|
|
typedef int value_type;
|
|
typedef int reference;
|
|
typedef leda::node key_type;
|
|
leda_graph_id_map() {}
|
|
template < class T > long operator[](T x) const { return x->id(); }
|
|
};
|
|
template < class vtype, class etype >
|
|
inline leda_graph_id_map get(
|
|
vertex_index_t, const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return leda_graph_id_map();
|
|
}
|
|
template < class vtype, class etype >
|
|
inline leda_graph_id_map get(edge_index_t, const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
return leda_graph_id_map();
|
|
}
|
|
|
|
template < class Tag > struct leda_property_map
|
|
{
|
|
};
|
|
|
|
template <> struct leda_property_map< vertex_index_t >
|
|
{
|
|
template < class vtype, class etype > struct bind_
|
|
{
|
|
typedef leda_graph_id_map type;
|
|
typedef leda_graph_id_map const_type;
|
|
};
|
|
};
|
|
template <> struct leda_property_map< edge_index_t >
|
|
{
|
|
template < class vtype, class etype > struct bind_
|
|
{
|
|
typedef leda_graph_id_map type;
|
|
typedef leda_graph_id_map const_type;
|
|
};
|
|
};
|
|
|
|
template < class Data, class DataRef, class GraphPtr >
|
|
class leda_graph_data_map : public put_get_helper< DataRef,
|
|
leda_graph_data_map< Data, DataRef, GraphPtr > >
|
|
{
|
|
public:
|
|
typedef Data value_type;
|
|
typedef DataRef reference;
|
|
typedef void key_type;
|
|
typedef lvalue_property_map_tag category;
|
|
leda_graph_data_map(GraphPtr g) : m_g(g) {}
|
|
template < class NodeOrEdge > DataRef operator[](NodeOrEdge x) const
|
|
{
|
|
return (*m_g)[x];
|
|
}
|
|
|
|
protected:
|
|
GraphPtr m_g;
|
|
};
|
|
|
|
template <> struct leda_property_map< vertex_all_t >
|
|
{
|
|
template < class vtype, class etype > struct bind_
|
|
{
|
|
typedef leda_graph_data_map< vtype, vtype&,
|
|
leda::GRAPH< vtype, etype >* >
|
|
type;
|
|
typedef leda_graph_data_map< vtype, const vtype&,
|
|
const leda::GRAPH< vtype, etype >* >
|
|
const_type;
|
|
};
|
|
};
|
|
template < class vtype, class etype >
|
|
inline typename property_map< leda::GRAPH< vtype, etype >, vertex_all_t >::type
|
|
get(vertex_all_t, leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typedef
|
|
typename property_map< leda::GRAPH< vtype, etype >, vertex_all_t >::type
|
|
pmap_type;
|
|
return pmap_type(&g);
|
|
}
|
|
template < class vtype, class etype >
|
|
inline typename property_map< leda::GRAPH< vtype, etype >,
|
|
vertex_all_t >::const_type
|
|
get(vertex_all_t, const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typedef typename property_map< leda::GRAPH< vtype, etype >,
|
|
vertex_all_t >::const_type pmap_type;
|
|
return pmap_type(&g);
|
|
}
|
|
|
|
template <> struct leda_property_map< edge_all_t >
|
|
{
|
|
template < class vtype, class etype > struct bind_
|
|
{
|
|
typedef leda_graph_data_map< etype, etype&,
|
|
leda::GRAPH< vtype, etype >* >
|
|
type;
|
|
typedef leda_graph_data_map< etype, const etype&,
|
|
const leda::GRAPH< vtype, etype >* >
|
|
const_type;
|
|
};
|
|
};
|
|
template < class vtype, class etype >
|
|
inline typename property_map< leda::GRAPH< vtype, etype >, edge_all_t >::type
|
|
get(edge_all_t, leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typedef
|
|
typename property_map< leda::GRAPH< vtype, etype >, edge_all_t >::type
|
|
pmap_type;
|
|
return pmap_type(&g);
|
|
}
|
|
template < class vtype, class etype >
|
|
inline
|
|
typename property_map< leda::GRAPH< vtype, etype >, edge_all_t >::const_type
|
|
get(edge_all_t, const leda::GRAPH< vtype, etype >& g)
|
|
{
|
|
typedef typename property_map< leda::GRAPH< vtype, etype >,
|
|
edge_all_t >::const_type pmap_type;
|
|
return pmap_type(&g);
|
|
}
|
|
|
|
// property map interface to the LEDA node_array class
|
|
|
|
template < class E, class ERef, class NodeMapPtr >
|
|
class leda_node_property_map
|
|
: public put_get_helper< ERef, leda_node_property_map< E, ERef, NodeMapPtr > >
|
|
{
|
|
public:
|
|
typedef E value_type;
|
|
typedef ERef reference;
|
|
typedef leda::node key_type;
|
|
typedef lvalue_property_map_tag category;
|
|
leda_node_property_map(NodeMapPtr a) : m_array(a) {}
|
|
ERef operator[](leda::node n) const { return (*m_array)[n]; }
|
|
|
|
protected:
|
|
NodeMapPtr m_array;
|
|
};
|
|
template < class E >
|
|
leda_node_property_map< E, const E&, const leda::node_array< E >* >
|
|
make_leda_node_property_map(const leda::node_array< E >& a)
|
|
{
|
|
typedef leda_node_property_map< E, const E&, const leda::node_array< E >* >
|
|
pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
template < class E >
|
|
leda_node_property_map< E, E&, leda::node_array< E >* >
|
|
make_leda_node_property_map(leda::node_array< E >& a)
|
|
{
|
|
typedef leda_node_property_map< E, E&, leda::node_array< E >* > pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
|
|
template < class E >
|
|
leda_node_property_map< E, const E&, const leda::node_map< E >* >
|
|
make_leda_node_property_map(const leda::node_map< E >& a)
|
|
{
|
|
typedef leda_node_property_map< E, const E&, const leda::node_map< E >* >
|
|
pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
template < class E >
|
|
leda_node_property_map< E, E&, leda::node_map< E >* >
|
|
make_leda_node_property_map(leda::node_map< E >& a)
|
|
{
|
|
typedef leda_node_property_map< E, E&, leda::node_map< E >* > pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
|
|
// g++ 'enumeral_type' in template unification not implemented workaround
|
|
template < class vtype, class etype, class Tag >
|
|
struct property_map< leda::GRAPH< vtype, etype >, Tag >
|
|
{
|
|
typedef typename leda_property_map< Tag >::template bind_< vtype, etype >
|
|
map_gen;
|
|
typedef typename map_gen::type type;
|
|
typedef typename map_gen::const_type const_type;
|
|
};
|
|
|
|
template < class vtype, class etype, class PropertyTag, class Key >
|
|
inline typename boost::property_traits< typename boost::property_map<
|
|
leda::GRAPH< vtype, etype >, PropertyTag >::const_type >::value_type
|
|
get(PropertyTag p, const leda::GRAPH< vtype, etype >& g, const Key& key)
|
|
{
|
|
return get(get(p, g), key);
|
|
}
|
|
|
|
template < class vtype, class etype, class PropertyTag, class Key, class Value >
|
|
inline void put(PropertyTag p, leda::GRAPH< vtype, etype >& g, const Key& key,
|
|
const Value& value)
|
|
{
|
|
typedef
|
|
typename property_map< leda::GRAPH< vtype, etype >, PropertyTag >::type
|
|
Map;
|
|
Map pmap = get(p, g);
|
|
put(pmap, key, value);
|
|
}
|
|
|
|
// property map interface to the LEDA edge_array class
|
|
|
|
template < class E, class ERef, class EdgeMapPtr >
|
|
class leda_edge_property_map
|
|
: public put_get_helper< ERef, leda_edge_property_map< E, ERef, EdgeMapPtr > >
|
|
{
|
|
public:
|
|
typedef E value_type;
|
|
typedef ERef reference;
|
|
typedef leda::edge key_type;
|
|
typedef lvalue_property_map_tag category;
|
|
leda_edge_property_map(EdgeMapPtr a) : m_array(a) {}
|
|
ERef operator[](leda::edge n) const { return (*m_array)[n]; }
|
|
|
|
protected:
|
|
EdgeMapPtr m_array;
|
|
};
|
|
template < class E >
|
|
leda_edge_property_map< E, const E&, const leda::edge_array< E >* >
|
|
make_leda_node_property_map(const leda::node_array< E >& a)
|
|
{
|
|
typedef leda_edge_property_map< E, const E&, const leda::node_array< E >* >
|
|
pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
template < class E >
|
|
leda_edge_property_map< E, E&, leda::edge_array< E >* >
|
|
make_leda_edge_property_map(leda::edge_array< E >& a)
|
|
{
|
|
typedef leda_edge_property_map< E, E&, leda::edge_array< E >* > pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
|
|
template < class E >
|
|
leda_edge_property_map< E, const E&, const leda::edge_map< E >* >
|
|
make_leda_edge_property_map(const leda::edge_map< E >& a)
|
|
{
|
|
typedef leda_edge_property_map< E, const E&, const leda::edge_map< E >* >
|
|
pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
template < class E >
|
|
leda_edge_property_map< E, E&, leda::edge_map< E >* >
|
|
make_leda_edge_property_map(leda::edge_map< E >& a)
|
|
{
|
|
typedef leda_edge_property_map< E, E&, leda::edge_map< E >* > pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
|
|
} // namespace boost
|
|
|
|
#endif // BOOST_GRAPH_LEDA_HPP
|