libcarla/include/system/boost/geometry/srs/projections/proj/stere.hpp
2024-10-18 13:19:59 +08:00

547 lines
22 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Boost.Geometry - gis-projections (based on PROJ4)
// Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2017, 2018, 2019.
// Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This file is converted from PROJ4, http://trac.osgeo.org/proj
// PROJ4 is originally written by Gerald Evenden (then of the USGS)
// PROJ4 is maintained by Frank Warmerdam
// PROJ4 is converted to Boost.Geometry by Barend Gehrels
// Last updated version of proj: 5.0.0
// Original copyright notice:
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#ifndef BOOST_GEOMETRY_PROJECTIONS_STERE_HPP
#define BOOST_GEOMETRY_PROJECTIONS_STERE_HPP
#include <boost/config.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/math/special_functions/hypot.hpp>
#include <boost/geometry/srs/projections/impl/base_static.hpp>
#include <boost/geometry/srs/projections/impl/base_dynamic.hpp>
#include <boost/geometry/srs/projections/impl/factory_entry.hpp>
#include <boost/geometry/srs/projections/impl/pj_param.hpp>
#include <boost/geometry/srs/projections/impl/pj_tsfn.hpp>
#include <boost/geometry/srs/projections/impl/projects.hpp>
namespace boost { namespace geometry
{
namespace projections
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace stere
{
static const double epsilon10 = 1.e-10;
static const double tolerance = 1.e-8;
static const int n_iter = 8;
static const double conv_tolerance = 1.e-10;
enum mode_type {
s_pole = 0,
n_pole = 1,
obliq = 2,
equit = 3
};
template <typename T>
struct par_stere
{
T phits;
T sinX1;
T cosX1;
T akm1;
mode_type mode;
bool variant_c;
};
template <typename T>
inline T ssfn_(T const& phit, T sinphi, T const& eccen)
{
static const T half_pi = detail::half_pi<T>();
sinphi *= eccen;
return (tan (.5 * (half_pi + phit)) *
math::pow((T(1) - sinphi) / (T(1) + sinphi), T(0.5) * eccen));
}
template <typename T, typename Parameters>
struct base_stere_ellipsoid
{
par_stere<T> m_proj_parm;
// FORWARD(e_forward) ellipsoid
// Project coordinates from geographic (lon, lat) to cartesian (x, y)
inline void fwd(Parameters const& par, T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const
{
static const T half_pi = detail::half_pi<T>();
T coslam, sinlam, sinX=0.0, cosX=0.0, X, A = 0.0, sinphi;
coslam = cos(lp_lon);
sinlam = sin(lp_lon);
sinphi = sin(lp_lat);
if (this->m_proj_parm.mode == obliq || this->m_proj_parm.mode == equit) {
sinX = sin(X = 2. * atan(ssfn_(lp_lat, sinphi, par.e)) - half_pi);
cosX = cos(X);
}
switch (this->m_proj_parm.mode) {
case obliq:
A = this->m_proj_parm.akm1 / (this->m_proj_parm.cosX1 * (1. + this->m_proj_parm.sinX1 * sinX +
this->m_proj_parm.cosX1 * cosX * coslam));
xy_y = A * (this->m_proj_parm.cosX1 * sinX - this->m_proj_parm.sinX1 * cosX * coslam);
goto xmul; /* but why not just xy.x = A * cosX; break; ? */
case equit:
// TODO: calculate denominator once
/* avoid zero division */
if (1. + cosX * coslam == 0.0) {
xy_y = HUGE_VAL;
} else {
A = this->m_proj_parm.akm1 / (1. + cosX * coslam);
xy_y = A * sinX;
}
xmul:
xy_x = A * cosX;
break;
case s_pole:
lp_lat = -lp_lat;
coslam = - coslam;
sinphi = -sinphi;
BOOST_FALLTHROUGH;
case n_pole:
// see IOGP Publication 373-7-2 Geomatics Guidance Note number 7, part 2
// December 2021 pg. 82
if( m_proj_parm.variant_c )
{
auto t = pj_tsfn(lp_lat, sinphi, par.e);
auto tf = pj_tsfn(this->m_proj_parm.phits,
sin(this->m_proj_parm.phits),
par.e);
xy_x = this->m_proj_parm.akm1 * t;
auto mf = this->m_proj_parm.akm1 * tf;
xy_y = - xy_x * coslam - mf;
} else {
xy_x = this->m_proj_parm.akm1 * pj_tsfn(lp_lat, sinphi, par.e);
xy_y = - xy_x * coslam;
}
break;
}
xy_x = xy_x * sinlam;
}
// INVERSE(e_inverse) ellipsoid
// Project coordinates from cartesian (x, y) to geographic (lon, lat)
inline void inv(Parameters const& par, T xy_x, T xy_y, T& lp_lon, T& lp_lat) const
{
static const T half_pi = detail::half_pi<T>();
T cosphi, sinphi, tp=0.0, phi_l=0.0, rho, halfe=0.0, halfpi=0.0;
T mf = 0;
int i;
rho = boost::math::hypot(xy_x, xy_y);
switch (this->m_proj_parm.mode) {
case obliq:
case equit:
cosphi = cos( tp = 2. * atan2(rho * this->m_proj_parm.cosX1 , this->m_proj_parm.akm1) );
sinphi = sin(tp);
if( rho == 0.0 )
phi_l = asin(cosphi * this->m_proj_parm.sinX1);
else
phi_l = asin(cosphi * this->m_proj_parm.sinX1 + (xy_y * sinphi * this->m_proj_parm.cosX1 / rho));
tp = tan(.5 * (half_pi + phi_l));
xy_x *= sinphi;
xy_y = rho * this->m_proj_parm.cosX1 * cosphi - xy_y * this->m_proj_parm.sinX1* sinphi;
halfpi = half_pi;
halfe = .5 * par.e;
break;
case n_pole:
xy_y = -xy_y;
BOOST_FALLTHROUGH;
case s_pole:
// see IOGP Publication 373-7-2 Geomatics Guidance Note number 7, part 2
// December 2021 pg. 82
if( m_proj_parm.variant_c )
{
auto tf = pj_tsfn(this->m_proj_parm.phits,
sin(this->m_proj_parm.phits),
par.e);
mf = this->m_proj_parm.akm1 * tf;
rho = boost::math::hypot(xy_x, xy_y + mf);
}
phi_l = half_pi - 2. * atan(tp = - rho / this->m_proj_parm.akm1);
halfpi = -half_pi;
halfe = -.5 * par.e;
break;
}
for (i = n_iter; i--; phi_l = lp_lat) {
sinphi = par.e * sin(phi_l);
lp_lat = T(2) * atan(tp * math::pow((T(1)+sinphi)/(T(1)-sinphi), halfe)) - halfpi;
if (fabs(phi_l - lp_lat) < conv_tolerance) {
if (this->m_proj_parm.mode == s_pole)
lp_lat = -lp_lat;
lp_lon = (xy_x == 0. && xy_y == 0.) ? 0. : atan2(xy_x, xy_y + mf);
return;
}
}
BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) );
}
static inline std::string get_name()
{
return "stere_ellipsoid";
}
};
template <typename T, typename Parameters>
struct base_stere_spheroid
{
par_stere<T> m_proj_parm;
// FORWARD(s_forward) spheroid
// Project coordinates from geographic (lon, lat) to cartesian (x, y)
inline void fwd(Parameters const& , T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const
{
static const T fourth_pi = detail::fourth_pi<T>();
static const T half_pi = detail::half_pi<T>();
T sinphi, cosphi, coslam, sinlam;
sinphi = sin(lp_lat);
cosphi = cos(lp_lat);
coslam = cos(lp_lon);
sinlam = sin(lp_lon);
switch (this->m_proj_parm.mode) {
case equit:
xy_y = 1. + cosphi * coslam;
goto oblcon;
case obliq:
xy_y = 1. + this->m_proj_parm.sinX1 * sinphi + this->m_proj_parm.cosX1 * cosphi * coslam;
oblcon:
if (xy_y <= epsilon10) {
BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) );
}
xy_x = (xy_y = this->m_proj_parm.akm1 / xy_y) * cosphi * sinlam;
xy_y *= (this->m_proj_parm.mode == equit) ? sinphi :
this->m_proj_parm.cosX1 * sinphi - this->m_proj_parm.sinX1 * cosphi * coslam;
break;
case n_pole:
coslam = - coslam;
lp_lat = - lp_lat;
BOOST_FALLTHROUGH;
case s_pole:
if (fabs(lp_lat - half_pi) < tolerance) {
BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) );
}
xy_x = sinlam * ( xy_y = this->m_proj_parm.akm1 * tan(fourth_pi + .5 * lp_lat) );
xy_y *= coslam;
break;
}
}
// INVERSE(s_inverse) spheroid
// Project coordinates from cartesian (x, y) to geographic (lon, lat)
inline void inv(Parameters const& par, T const& xy_x, T xy_y, T& lp_lon, T& lp_lat) const
{
T c, rh, sinc, cosc;
sinc = sin(c = 2. * atan((rh = boost::math::hypot(xy_x, xy_y)) / this->m_proj_parm.akm1));
cosc = cos(c);
lp_lon = 0.;
switch (this->m_proj_parm.mode) {
case equit:
if (fabs(rh) <= epsilon10)
lp_lat = 0.;
else
lp_lat = asin(xy_y * sinc / rh);
if (cosc != 0. || xy_x != 0.)
lp_lon = atan2(xy_x * sinc, cosc * rh);
break;
case obliq:
if (fabs(rh) <= epsilon10)
lp_lat = par.phi0;
else
lp_lat = asin(cosc * this->m_proj_parm.sinX1 + xy_y * sinc * this->m_proj_parm.cosX1 / rh);
if ((c = cosc - this->m_proj_parm.sinX1 * sin(lp_lat)) != 0. || xy_x != 0.)
lp_lon = atan2(xy_x * sinc * this->m_proj_parm.cosX1, c * rh);
break;
case n_pole:
xy_y = -xy_y;
BOOST_FALLTHROUGH;
case s_pole:
if (fabs(rh) <= epsilon10)
lp_lat = par.phi0;
else
lp_lat = asin(this->m_proj_parm.mode == s_pole ? - cosc : cosc);
lp_lon = (xy_x == 0. && xy_y == 0.) ? 0. : atan2(xy_x, xy_y);
break;
}
}
static inline std::string get_name()
{
return "stere_spheroid";
}
};
template <typename Parameters, typename T>
inline void setup(Parameters const& par, par_stere<T>& proj_parm) /* general initialization */
{
static const T fourth_pi = detail::fourth_pi<T>();
static const T half_pi = detail::half_pi<T>();
T t;
if (fabs((t = fabs(par.phi0)) - half_pi) < epsilon10)
proj_parm.mode = par.phi0 < 0. ? s_pole : n_pole;
else
proj_parm.mode = t > epsilon10 ? obliq : equit;
proj_parm.phits = fabs(proj_parm.phits);
if (par.es != 0.0) {
T X;
switch (proj_parm.mode) {
case n_pole:
case s_pole:
if (fabs(proj_parm.phits - half_pi) < epsilon10)
proj_parm.akm1 = 2. * par.k0 /
sqrt(math::pow(T(1)+par.e,T(1)+par.e)*math::pow(T(1)-par.e,T(1)-par.e));
else {
proj_parm.akm1 = cos(proj_parm.phits) /
pj_tsfn(proj_parm.phits, t = sin(proj_parm.phits), par.e);
t *= par.e;
proj_parm.akm1 /= sqrt(1. - t * t);
}
break;
case equit:
case obliq:
t = sin(par.phi0);
X = 2. * atan(ssfn_(par.phi0, t, par.e)) - half_pi;
t *= par.e;
proj_parm.akm1 = 2. * par.k0 * cos(par.phi0) / sqrt(1. - t * t);
proj_parm.sinX1 = sin(X);
proj_parm.cosX1 = cos(X);
break;
}
} else {
switch (proj_parm.mode) {
case obliq:
proj_parm.sinX1 = sin(par.phi0);
proj_parm.cosX1 = cos(par.phi0);
BOOST_FALLTHROUGH;
case equit:
proj_parm.akm1 = 2. * par.k0;
break;
case s_pole:
case n_pole:
proj_parm.akm1 = fabs(proj_parm.phits - half_pi) >= epsilon10 ?
cos(proj_parm.phits) / tan(fourth_pi - .5 * proj_parm.phits) :
2. * par.k0 ;
break;
}
}
}
// Stereographic
template <typename Params, typename Parameters, typename T>
inline void setup_stere(Params const& params, Parameters const& par, par_stere<T>& proj_parm)
{
static const T half_pi = detail::half_pi<T>();
if (! pj_param_r<srs::spar::lat_ts>(params, "lat_ts", srs::dpar::lat_ts, proj_parm.phits))
proj_parm.phits = half_pi;
proj_parm.variant_c = false;
if (pj_param_exists<srs::spar::variant_c>(params, "variant_c", srs::dpar::variant_c))
proj_parm.variant_c = true;
setup(par, proj_parm);
}
// Universal Polar Stereographic
template <typename Params, typename Parameters, typename T>
inline void setup_ups(Params const& params, Parameters& par, par_stere<T>& proj_parm)
{
static const T half_pi = detail::half_pi<T>();
/* International Ellipsoid */
par.phi0 = pj_get_param_b<srs::spar::south>(params, "south", srs::dpar::south) ? -half_pi: half_pi;
if (par.es == 0.0) {
BOOST_THROW_EXCEPTION( projection_exception(error_ellipsoid_use_required) );
}
par.k0 = .994;
par.x0 = 2000000.;
par.y0 = 2000000.;
proj_parm.phits = half_pi;
par.lam0 = 0.;
setup(par, proj_parm);
}
}} // namespace detail::stere
#endif // doxygen
/*!
\brief Stereographic projection
\ingroup projections
\tparam Geographic latlong point type
\tparam Cartesian xy point type
\tparam Parameters parameter type
\par Projection characteristics
- Azimuthal
- Spheroid
- Ellipsoid
\par Projection parameters
- lat_ts: Latitude of true scale (degrees)
\par Example
\image html ex_stere.gif
*/
template <typename T, typename Parameters>
struct stere_ellipsoid : public detail::stere::base_stere_ellipsoid<T, Parameters>
{
template <typename Params>
inline stere_ellipsoid(Params const& params, Parameters const& par)
{
detail::stere::setup_stere(params, par, this->m_proj_parm);
}
};
/*!
\brief Stereographic projection
\ingroup projections
\tparam Geographic latlong point type
\tparam Cartesian xy point type
\tparam Parameters parameter type
\par Projection characteristics
- Azimuthal
- Spheroid
- Ellipsoid
\par Projection parameters
- lat_ts: Latitude of true scale (degrees)
\par Example
\image html ex_stere.gif
*/
template <typename T, typename Parameters>
struct stere_spheroid : public detail::stere::base_stere_spheroid<T, Parameters>
{
template <typename Params>
inline stere_spheroid(Params const& params, Parameters const& par)
{
detail::stere::setup_stere(params, par, this->m_proj_parm);
}
};
/*!
\brief Universal Polar Stereographic projection
\ingroup projections
\tparam Geographic latlong point type
\tparam Cartesian xy point type
\tparam Parameters parameter type
\par Projection characteristics
- Azimuthal
- Spheroid
- Ellipsoid
\par Projection parameters
- south: Denotes southern hemisphere UTM zone (boolean)
\par Example
\image html ex_ups.gif
*/
template <typename T, typename Parameters>
struct ups_ellipsoid : public detail::stere::base_stere_ellipsoid<T, Parameters>
{
template <typename Params>
inline ups_ellipsoid(Params const& params, Parameters & par)
{
detail::stere::setup_ups(params, par, this->m_proj_parm);
}
};
/*!
\brief Universal Polar Stereographic projection
\ingroup projections
\tparam Geographic latlong point type
\tparam Cartesian xy point type
\tparam Parameters parameter type
\par Projection characteristics
- Azimuthal
- Spheroid
- Ellipsoid
\par Projection parameters
- south: Denotes southern hemisphere UTM zone (boolean)
\par Example
\image html ex_ups.gif
*/
template <typename T, typename Parameters>
struct ups_spheroid : public detail::stere::base_stere_spheroid<T, Parameters>
{
template <typename Params>
inline ups_spheroid(Params const& params, Parameters & par)
{
detail::stere::setup_ups(params, par, this->m_proj_parm);
}
};
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
// Static projection
BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_stere, stere_spheroid, stere_ellipsoid)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_ups, ups_spheroid, ups_ellipsoid)
// Factory entry(s)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(stere_entry, stere_spheroid, stere_ellipsoid)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(ups_entry, ups_spheroid, ups_ellipsoid)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(stere_init)
{
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(stere, stere_entry)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(ups, ups_entry)
}
} // namespace detail
#endif // doxygen
} // namespace projections
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_PROJECTIONS_STERE_HPP