libcarla/include/system/boost/geometry/srs/projections/proj/lsat.hpp
2024-10-18 13:19:59 +08:00

334 lines
15 KiB
C++

// Boost.Geometry - gis-projections (based on PROJ4)
// Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2017, 2018, 2019.
// Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This file is converted from PROJ4, http://trac.osgeo.org/proj
// PROJ4 is originally written by Gerald Evenden (then of the USGS)
// PROJ4 is maintained by Frank Warmerdam
// PROJ4 is converted to Boost.Geometry by Barend Gehrels
// Last updated version of proj: 5.0.0
// Original copyright notice:
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#ifndef BOOST_GEOMETRY_PROJECTIONS_LSAT_HPP
#define BOOST_GEOMETRY_PROJECTIONS_LSAT_HPP
#include <boost/geometry/srs/projections/impl/aasincos.hpp>
#include <boost/geometry/srs/projections/impl/base_static.hpp>
#include <boost/geometry/srs/projections/impl/base_dynamic.hpp>
#include <boost/geometry/srs/projections/impl/factory_entry.hpp>
#include <boost/geometry/srs/projections/impl/pj_param.hpp>
#include <boost/geometry/srs/projections/impl/projects.hpp>
#include <boost/geometry/util/math.hpp>
namespace boost { namespace geometry
{
namespace projections
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace lsat
{
static const double tolerance = 1e-7;
template <typename T>
struct par_lsat
{
T a2, a4, b, c1, c3;
T q, t, u, w, p22, sa, ca, xj, rlm, rlm2;
};
/* based upon Snyder and Linck, USGS-NMD */
template <typename T>
inline void
seraz0(T lam, T const& mult, par_lsat<T>& proj_parm)
{
T sdsq, h, s, fc, sd, sq, d__1 = 0;
lam *= geometry::math::d2r<T>();
sd = sin(lam);
sdsq = sd * sd;
s = proj_parm.p22 * proj_parm.sa * cos(lam) * sqrt((1. + proj_parm.t * sdsq)
/ ((1. + proj_parm.w * sdsq) * (1. + proj_parm.q * sdsq)));
d__1 = 1. + proj_parm.q * sdsq;
h = sqrt((1. + proj_parm.q * sdsq) / (1. + proj_parm.w * sdsq)) * ((1. + proj_parm.w * sdsq)
/ (d__1 * d__1) - proj_parm.p22 * proj_parm.ca);
sq = sqrt(proj_parm.xj * proj_parm.xj + s * s);
fc = mult * (h * proj_parm.xj - s * s) / sq;
proj_parm.b += fc;
proj_parm.a2 += fc * cos(lam + lam);
proj_parm.a4 += fc * cos(lam * 4.);
fc = mult * s * (h + proj_parm.xj) / sq;
proj_parm.c1 += fc * cos(lam);
proj_parm.c3 += fc * cos(lam * 3.);
}
template <typename T, typename Parameters>
struct base_lsat_ellipsoid
{
par_lsat<T> m_proj_parm;
// FORWARD(e_forward) ellipsoid
// Project coordinates from geographic (lon, lat) to cartesian (x, y)
inline void fwd(Parameters const& par, T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const
{
static const T fourth_pi = detail::fourth_pi<T>();
static const T half_pi = detail::half_pi<T>();
static const T one_and_half_pi = detail::one_and_half_pi<T>();
static const T two_and_half_pi = detail::two_and_half_pi<T>();
int l, nn;
T lamt = 0.0, xlam, sdsq, c, d, s, lamdp = 0.0, phidp, lampp, tanph;
T lamtp, cl, sd, sp, sav, tanphi;
if (lp_lat > half_pi)
lp_lat = half_pi;
else if (lp_lat < -half_pi)
lp_lat = -half_pi;
if (lp_lat >= 0. )
lampp = half_pi;
else
lampp = one_and_half_pi;
tanphi = tan(lp_lat);
for (nn = 0;;) {
T fac;
sav = lampp;
lamtp = lp_lon + this->m_proj_parm.p22 * lampp;
cl = cos(lamtp);
if (fabs(cl) < tolerance)
lamtp -= tolerance;
if( cl < 0 )
fac = lampp + sin(lampp) * half_pi;
else
fac = lampp - sin(lampp) * half_pi;
for (l = 50; l; --l) {
lamt = lp_lon + this->m_proj_parm.p22 * sav;
c = cos(lamt);
if (fabs(c) < tolerance)
lamt -= tolerance;
xlam = (par.one_es * tanphi * this->m_proj_parm.sa + sin(lamt) * this->m_proj_parm.ca) / c;
lamdp = atan(xlam) + fac;
if (fabs(fabs(sav) - fabs(lamdp)) < tolerance)
break;
sav = lamdp;
}
if (!l || ++nn >= 3 || (lamdp > this->m_proj_parm.rlm && lamdp < this->m_proj_parm.rlm2))
break;
if (lamdp <= this->m_proj_parm.rlm)
lampp = two_and_half_pi;
else if (lamdp >= this->m_proj_parm.rlm2)
lampp = half_pi;
}
if (l) {
sp = sin(lp_lat);
phidp = aasin((par.one_es * this->m_proj_parm.ca * sp - this->m_proj_parm.sa * cos(lp_lat) *
sin(lamt)) / sqrt(1. - par.es * sp * sp));
tanph = log(tan(fourth_pi + .5 * phidp));
sd = sin(lamdp);
sdsq = sd * sd;
s = this->m_proj_parm.p22 * this->m_proj_parm.sa * cos(lamdp) * sqrt((1. + this->m_proj_parm.t * sdsq)
/ ((1. + this->m_proj_parm.w * sdsq) * (1. + this->m_proj_parm.q * sdsq)));
d = sqrt(this->m_proj_parm.xj * this->m_proj_parm.xj + s * s);
xy_x = this->m_proj_parm.b * lamdp + this->m_proj_parm.a2 * sin(2. * lamdp) + this->m_proj_parm.a4 *
sin(lamdp * 4.) - tanph * s / d;
xy_y = this->m_proj_parm.c1 * sd + this->m_proj_parm.c3 * sin(lamdp * 3.) + tanph * this->m_proj_parm.xj / d;
} else
xy_x = xy_y = HUGE_VAL;
}
// INVERSE(e_inverse) ellipsoid
// Project coordinates from cartesian (x, y) to geographic (lon, lat)
inline void inv(Parameters const& par, T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const
{
static const T fourth_pi = detail::fourth_pi<T>();
static const T half_pi = detail::half_pi<T>();
int nn;
T lamt, sdsq, s, lamdp, phidp, sppsq, dd, sd, sl, fac, scl, sav, spp;
lamdp = xy_x / this->m_proj_parm.b;
nn = 50;
do {
sav = lamdp;
sd = sin(lamdp);
sdsq = sd * sd;
s = this->m_proj_parm.p22 * this->m_proj_parm.sa * cos(lamdp) * sqrt((1. + this->m_proj_parm.t * sdsq)
/ ((1. + this->m_proj_parm.w * sdsq) * (1. + this->m_proj_parm.q * sdsq)));
lamdp = xy_x + xy_y * s / this->m_proj_parm.xj - this->m_proj_parm.a2 * sin(
2. * lamdp) - this->m_proj_parm.a4 * sin(lamdp * 4.) - s / this->m_proj_parm.xj * (
this->m_proj_parm.c1 * sin(lamdp) + this->m_proj_parm.c3 * sin(lamdp * 3.));
lamdp /= this->m_proj_parm.b;
} while (fabs(lamdp - sav) >= tolerance && --nn);
sl = sin(lamdp);
fac = exp(sqrt(1. + s * s / this->m_proj_parm.xj / this->m_proj_parm.xj) * (xy_y -
this->m_proj_parm.c1 * sl - this->m_proj_parm.c3 * sin(lamdp * 3.)));
phidp = 2. * (atan(fac) - fourth_pi);
dd = sl * sl;
if (fabs(cos(lamdp)) < tolerance)
lamdp -= tolerance;
spp = sin(phidp);
sppsq = spp * spp;
lamt = atan(((1. - sppsq * par.rone_es) * tan(lamdp) *
this->m_proj_parm.ca - spp * this->m_proj_parm.sa * sqrt((1. + this->m_proj_parm.q * dd) * (
1. - sppsq) - sppsq * this->m_proj_parm.u) / cos(lamdp)) / (1. - sppsq
* (1. + this->m_proj_parm.u)));
sl = lamt >= 0. ? 1. : -1.;
scl = cos(lamdp) >= 0. ? 1. : -1;
lamt -= half_pi * (1. - scl) * sl;
lp_lon = lamt - this->m_proj_parm.p22 * lamdp;
if (fabs(this->m_proj_parm.sa) < tolerance)
lp_lat = aasin(spp / sqrt(par.one_es * par.one_es + par.es * sppsq));
else
lp_lat = atan((tan(lamdp) * cos(lamt) - this->m_proj_parm.ca * sin(lamt)) /
(par.one_es * this->m_proj_parm.sa));
}
static inline std::string get_name()
{
return "lsat_ellipsoid";
}
};
// Space oblique for LANDSAT
template <typename Params, typename Parameters, typename T>
inline void setup_lsat(Params const& params, Parameters& par, par_lsat<T>& proj_parm)
{
static T const d2r = geometry::math::d2r<T>();
static T const pi = detail::pi<T>();
static T const two_pi = detail::two_pi<T>();
int land, path;
T lam, alf, esc, ess;
land = pj_get_param_i<srs::spar::lsat>(params, "lsat", srs::dpar::lsat);
if (land <= 0 || land > 5)
BOOST_THROW_EXCEPTION( projection_exception(error_lsat_not_in_range) );
path = pj_get_param_i<srs::spar::path>(params, "path", srs::dpar::path);
if (path <= 0 || path > (land <= 3 ? 251 : 233))
BOOST_THROW_EXCEPTION( projection_exception(error_path_not_in_range) );
if (land <= 3) {
par.lam0 = d2r * 128.87 - two_pi / 251. * path;
proj_parm.p22 = 103.2669323;
alf = d2r * 99.092;
} else {
par.lam0 = d2r * 129.3 - two_pi / 233. * path;
proj_parm.p22 = 98.8841202;
alf = d2r * 98.2;
}
proj_parm.p22 /= 1440.;
proj_parm.sa = sin(alf);
proj_parm.ca = cos(alf);
if (fabs(proj_parm.ca) < 1e-9)
proj_parm.ca = 1e-9;
esc = par.es * proj_parm.ca * proj_parm.ca;
ess = par.es * proj_parm.sa * proj_parm.sa;
proj_parm.w = (1. - esc) * par.rone_es;
proj_parm.w = proj_parm.w * proj_parm.w - 1.;
proj_parm.q = ess * par.rone_es;
proj_parm.t = ess * (2. - par.es) * par.rone_es * par.rone_es;
proj_parm.u = esc * par.rone_es;
proj_parm.xj = par.one_es * par.one_es * par.one_es;
proj_parm.rlm = pi * (1. / 248. + .5161290322580645);
proj_parm.rlm2 = proj_parm.rlm + two_pi;
proj_parm.a2 = proj_parm.a4 = proj_parm.b = proj_parm.c1 = proj_parm.c3 = 0.;
seraz0(0., 1., proj_parm);
for (lam = 9.; lam <= 81.0001; lam += 18.)
seraz0(lam, 4., proj_parm);
for (lam = 18; lam <= 72.0001; lam += 18.)
seraz0(lam, 2., proj_parm);
seraz0(90., 1., proj_parm);
proj_parm.a2 /= 30.;
proj_parm.a4 /= 60.;
proj_parm.b /= 30.;
proj_parm.c1 /= 15.;
proj_parm.c3 /= 45.;
}
}} // namespace detail::lsat
#endif // doxygen
/*!
\brief Space oblique for LANDSAT projection
\ingroup projections
\tparam Geographic latlong point type
\tparam Cartesian xy point type
\tparam Parameters parameter type
\par Projection characteristics
- Cylindrical
- Spheroid
- Ellipsoid
\par Projection parameters
- lsat (integer)
- path (integer)
\par Example
\image html ex_lsat.gif
*/
template <typename T, typename Parameters>
struct lsat_ellipsoid : public detail::lsat::base_lsat_ellipsoid<T, Parameters>
{
template <typename Params>
inline lsat_ellipsoid(Params const& params, Parameters & par)
{
detail::lsat::setup_lsat(params, par, this->m_proj_parm);
}
};
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
// Static projection
BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_lsat, lsat_ellipsoid)
// Factory entry(s)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(lsat_entry, lsat_ellipsoid)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(lsat_init)
{
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(lsat, lsat_entry)
}
} // namespace detail
#endif // doxygen
} // namespace projections
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_PROJECTIONS_LSAT_HPP