libcarla/include/system/boost/geometry/srs/projections/proj/chamb.hpp
2024-10-18 13:19:59 +08:00

290 lines
12 KiB
C++

// Boost.Geometry - gis-projections (based on PROJ4)
// Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2017, 2018, 2019.
// Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This file is converted from PROJ4, http://trac.osgeo.org/proj
// PROJ4 is originally written by Gerald Evenden (then of the USGS)
// PROJ4 is maintained by Frank Warmerdam
// PROJ4 is converted to Boost.Geometry by Barend Gehrels
// Last updated version of proj: 5.0.0
// Original copyright notice:
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#ifndef BOOST_GEOMETRY_PROJECTIONS_CHAMB_HPP
#define BOOST_GEOMETRY_PROJECTIONS_CHAMB_HPP
#include <cstdio>
#include <boost/geometry/srs/projections/impl/aasincos.hpp>
#include <boost/geometry/srs/projections/impl/base_static.hpp>
#include <boost/geometry/srs/projections/impl/base_dynamic.hpp>
#include <boost/geometry/srs/projections/impl/factory_entry.hpp>
#include <boost/geometry/srs/projections/impl/pj_param.hpp>
#include <boost/geometry/srs/projections/impl/projects.hpp>
#include <boost/geometry/util/math.hpp>
namespace boost { namespace geometry
{
namespace projections
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace chamb
{
//static const double third = 0.333333333333333333;
static const double tolerance = 1e-9;
// specific for 'chamb'
template <typename T>
struct vect_ra { T r, Az; };
template <typename T>
struct point_xy { T x, y; };
template <typename T>
struct par_chamb
{
struct { /* control point data */
T phi, lam;
T cosphi, sinphi;
vect_ra<T> v;
point_xy<T> p;
T Az;
} c[3];
point_xy<T> p;
T beta_0, beta_1, beta_2;
};
/* distance and azimuth from point 1 to point 2 */
template <typename T>
inline vect_ra<T> vect(T const& dphi, T const& c1, T const& s1, T const& c2, T const& s2, T const& dlam)
{
vect_ra<T> v;
T cdl, dp, dl;
cdl = cos(dlam);
if (fabs(dphi) > 1. || fabs(dlam) > 1.)
v.r = aacos(s1 * s2 + c1 * c2 * cdl);
else { /* more accurate for smaller distances */
dp = sin(.5 * dphi);
dl = sin(.5 * dlam);
v.r = 2. * aasin(sqrt(dp * dp + c1 * c2 * dl * dl));
}
if (fabs(v.r) > tolerance)
v.Az = atan2(c2 * sin(dlam), c1 * s2 - s1 * c2 * cdl);
else
v.r = v.Az = 0.;
return v;
}
/* law of cosines */
template <typename T>
inline T lc(T const& b, T const& c, T const& a)
{
return aacos(.5 * (b * b + c * c - a * a) / (b * c));
}
template <typename T, typename Parameters>
struct base_chamb_spheroid
{
par_chamb<T> m_proj_parm;
// FORWARD(s_forward) spheroid
// Project coordinates from geographic (lon, lat) to cartesian (x, y)
inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const
{
static const T third = detail::third<T>();
T sinphi, cosphi, a;
vect_ra<T> v[3];
int i, j;
sinphi = sin(lp_lat);
cosphi = cos(lp_lat);
for (i = 0; i < 3; ++i) { /* dist/azimiths from control */
v[i] = vect(lp_lat - this->m_proj_parm.c[i].phi, this->m_proj_parm.c[i].cosphi, this->m_proj_parm.c[i].sinphi,
cosphi, sinphi, lp_lon - this->m_proj_parm.c[i].lam);
if (v[i].r == 0.0)
break;
v[i].Az = adjlon(v[i].Az - this->m_proj_parm.c[i].v.Az);
}
if (i < 3) /* current point at control point */
{ xy_x = this->m_proj_parm.c[i].p.x; xy_y = this->m_proj_parm.c[i].p.y; }
else { /* point mean of intersepts */
{ xy_x = this->m_proj_parm.p.x; xy_y = this->m_proj_parm.p.y; }
for (i = 0; i < 3; ++i) {
j = i == 2 ? 0 : i + 1;
a = lc(this->m_proj_parm.c[i].v.r, v[i].r, v[j].r);
if (v[i].Az < 0.)
a = -a;
if (! i) { /* coord comp unique to each arc */
xy_x += v[i].r * cos(a);
xy_y -= v[i].r * sin(a);
} else if (i == 1) {
a = this->m_proj_parm.beta_1 - a;
xy_x -= v[i].r * cos(a);
xy_y -= v[i].r * sin(a);
} else {
a = this->m_proj_parm.beta_2 - a;
xy_x += v[i].r * cos(a);
xy_y += v[i].r * sin(a);
}
}
xy_x *= third; /* mean of arc intercepts */
xy_y *= third;
}
}
static inline std::string get_name()
{
return "chamb_spheroid";
}
};
template <typename T>
inline T chamb_init_lat(srs::detail::proj4_parameters const& params, int i)
{
static const std::string lat[3] = {"lat_1", "lat_2", "lat_3"};
return _pj_get_param_r<T>(params, lat[i]);
}
template <typename T>
inline T chamb_init_lat(srs::dpar::parameters<T> const& params, int i)
{
static const srs::dpar::name_r lat[3] = {srs::dpar::lat_1, srs::dpar::lat_2, srs::dpar::lat_3};
return _pj_get_param_r<T>(params, lat[i]);
}
template <typename T>
inline T chamb_init_lon(srs::detail::proj4_parameters const& params, int i)
{
static const std::string lon[3] = {"lon_1", "lon_2", "lon_3"};
return _pj_get_param_r<T>(params, lon[i]);
}
template <typename T>
inline T chamb_init_lon(srs::dpar::parameters<T> const& params, int i)
{
static const srs::dpar::name_r lon[3] = {srs::dpar::lon_1, srs::dpar::lon_2, srs::dpar::lon_3};
return _pj_get_param_r<T>(params, lon[i]);
}
// Chamberlin Trimetric
template <typename Params, typename Parameters, typename T>
inline void setup_chamb(Params const& params, Parameters& par, par_chamb<T>& proj_parm)
{
static const T pi = detail::pi<T>();
int i, j;
for (i = 0; i < 3; ++i) { /* get control point locations */
proj_parm.c[i].phi = chamb_init_lat<T>(params, i);
proj_parm.c[i].lam = chamb_init_lon<T>(params, i);
proj_parm.c[i].lam = adjlon(proj_parm.c[i].lam - par.lam0);
proj_parm.c[i].cosphi = cos(proj_parm.c[i].phi);
proj_parm.c[i].sinphi = sin(proj_parm.c[i].phi);
}
for (i = 0; i < 3; ++i) { /* inter ctl pt. distances and azimuths */
j = i == 2 ? 0 : i + 1;
proj_parm.c[i].v = vect(proj_parm.c[j].phi - proj_parm.c[i].phi, proj_parm.c[i].cosphi, proj_parm.c[i].sinphi,
proj_parm.c[j].cosphi, proj_parm.c[j].sinphi, proj_parm.c[j].lam - proj_parm.c[i].lam);
if (proj_parm.c[i].v.r == 0.0)
BOOST_THROW_EXCEPTION( projection_exception(error_control_point_no_dist) );
/* co-linearity problem ignored for now */
}
proj_parm.beta_0 = lc(proj_parm.c[0].v.r, proj_parm.c[2].v.r, proj_parm.c[1].v.r);
proj_parm.beta_1 = lc(proj_parm.c[0].v.r, proj_parm.c[1].v.r, proj_parm.c[2].v.r);
proj_parm.beta_2 = pi - proj_parm.beta_0;
proj_parm.p.y = 2. * (proj_parm.c[0].p.y = proj_parm.c[1].p.y = proj_parm.c[2].v.r * sin(proj_parm.beta_0));
proj_parm.c[2].p.y = 0.;
proj_parm.c[0].p.x = - (proj_parm.c[1].p.x = 0.5 * proj_parm.c[0].v.r);
proj_parm.p.x = proj_parm.c[2].p.x = proj_parm.c[0].p.x + proj_parm.c[2].v.r * cos(proj_parm.beta_0);
par.es = 0.;
}
}} // namespace detail::chamb
#endif // doxygen
/*!
\brief Chamberlin Trimetric projection
\ingroup projections
\tparam Geographic latlong point type
\tparam Cartesian xy point type
\tparam Parameters parameter type
\par Projection characteristics
- Miscellaneous
- Spheroid
- no inverse
\par Projection parameters
- lat_1: Latitude of control point 1 (degrees)
- lon_1: Longitude of control point 1 (degrees)
- lat_2: Latitude of control point 2 (degrees)
- lon_2: Longitude of control point 2 (degrees)
- lat_3: Latitude of control point 3 (degrees)
- lon_3: Longitude of control point 3 (degrees)
\par Example
\image html ex_chamb.gif
*/
template <typename T, typename Parameters>
struct chamb_spheroid : public detail::chamb::base_chamb_spheroid<T, Parameters>
{
template <typename Params>
inline chamb_spheroid(Params const& params, Parameters & par)
{
detail::chamb::setup_chamb(params, par, this->m_proj_parm);
}
};
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
// Static projection
BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_F(srs::spar::proj_chamb, chamb_spheroid)
// Factory entry(s)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_F(chamb_entry, chamb_spheroid)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(chamb_init)
{
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(chamb, chamb_entry);
}
} // namespace detail
#endif // doxygen
} // namespace projections
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_PROJECTIONS_CHAMB_HPP