libcarla/include/system/boost/geometry/algorithms/detail/partition.hpp
2024-10-18 13:19:59 +08:00

876 lines
29 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2011-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.
// This file was modified by Oracle on 2015-2020.
// Modifications copyright (c) 2015-2020 Oracle and/or its affiliates.
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_PARTITION_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_PARTITION_HPP
#include <cstddef>
#include <type_traits>
#include <vector>
#include <boost/range/begin.hpp>
#include <boost/range/empty.hpp>
#include <boost/range/end.hpp>
#include <boost/range/size.hpp>
#include <boost/geometry/algorithms/assign.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/coordinate_type.hpp>
namespace boost { namespace geometry
{
namespace detail { namespace partition
{
template <typename T, bool IsIntegral = std::is_integral<T>::value>
struct divide_interval
{
static inline T apply(T const& mi, T const& ma)
{
static T const two = 2;
return (mi + ma) / two;
}
};
template <typename T>
struct divide_interval<T, true>
{
static inline T apply(T const& mi, T const& ma)
{
// avoid overflow
return mi / 2 + ma / 2 + (mi % 2 + ma % 2) / 2;
}
};
template <int Dimension, typename Box>
inline void divide_box(Box const& box, Box& lower_box, Box& upper_box)
{
typedef typename coordinate_type<Box>::type ctype;
// Divide input box into two parts, e.g. left/right
ctype mid = divide_interval<ctype>::apply(
geometry::get<min_corner, Dimension>(box),
geometry::get<max_corner, Dimension>(box));
lower_box = box;
upper_box = box;
geometry::set<max_corner, Dimension>(lower_box, mid);
geometry::set<min_corner, Dimension>(upper_box, mid);
}
// Divide forward_range into three subsets: lower, upper and oversized
// (not-fitting)
// (lower == left or bottom, upper == right or top)
template <typename Box, typename IteratorVector, typename OverlapsPolicy>
inline void divide_into_subsets(Box const& lower_box,
Box const& upper_box,
IteratorVector const& input,
IteratorVector& lower,
IteratorVector& upper,
IteratorVector& exceeding,
OverlapsPolicy const& overlaps_policy)
{
typedef typename boost::range_iterator
<
IteratorVector const
>::type it_type;
for(it_type it = boost::begin(input); it != boost::end(input); ++it)
{
bool const lower_overlapping = overlaps_policy.apply(lower_box, **it);
bool const upper_overlapping = overlaps_policy.apply(upper_box, **it);
if (lower_overlapping && upper_overlapping)
{
exceeding.push_back(*it);
}
else if (lower_overlapping)
{
lower.push_back(*it);
}
else if (upper_overlapping)
{
upper.push_back(*it);
}
else
{
// Is nowhere. That is (since 1.58) possible, it might be
// skipped by the OverlapsPolicy to enhance performance
}
}
}
template
<
typename Box,
typename IteratorVector,
typename ExpandPolicy
>
inline void expand_with_elements(Box& total, IteratorVector const& input,
ExpandPolicy const& expand_policy)
{
typedef typename boost::range_iterator<IteratorVector const>::type it_type;
for(it_type it = boost::begin(input); it != boost::end(input); ++it)
{
expand_policy.apply(total, **it);
}
}
// Match forward_range with itself
template <typename IteratorVector, typename VisitPolicy>
inline bool handle_one(IteratorVector const& input, VisitPolicy& visitor)
{
if (boost::empty(input))
{
return true;
}
typedef typename boost::range_iterator<IteratorVector const>::type it_type;
// Quadratic behaviour at lowest level (lowest quad, or all exceeding)
for (it_type it1 = boost::begin(input); it1 != boost::end(input); ++it1)
{
it_type it2 = it1;
for (++it2; it2 != boost::end(input); ++it2)
{
if (! visitor.apply(**it1, **it2))
{
return false; // interrupt
}
}
}
return true;
}
// Match forward range 1 with forward range 2
template
<
typename IteratorVector1,
typename IteratorVector2,
typename VisitPolicy
>
inline bool handle_two(IteratorVector1 const& input1,
IteratorVector2 const& input2,
VisitPolicy& visitor)
{
typedef typename boost::range_iterator
<
IteratorVector1 const
>::type iterator_type1;
typedef typename boost::range_iterator
<
IteratorVector2 const
>::type iterator_type2;
if (boost::empty(input1) || boost::empty(input2))
{
return true;
}
for(iterator_type1 it1 = boost::begin(input1);
it1 != boost::end(input1);
++it1)
{
for(iterator_type2 it2 = boost::begin(input2);
it2 != boost::end(input2);
++it2)
{
if (! visitor.apply(**it1, **it2))
{
return false; // interrupt
}
}
}
return true;
}
template <typename IteratorVector>
inline bool recurse_ok(IteratorVector const& input,
std::size_t min_elements, std::size_t level)
{
return boost::size(input) >= min_elements
&& level < 100;
}
template <typename IteratorVector1, typename IteratorVector2>
inline bool recurse_ok(IteratorVector1 const& input1,
IteratorVector2 const& input2,
std::size_t min_elements, std::size_t level)
{
return boost::size(input1) >= min_elements
&& recurse_ok(input2, min_elements, level);
}
template
<
typename IteratorVector1,
typename IteratorVector2,
typename IteratorVector3
>
inline bool recurse_ok(IteratorVector1 const& input1,
IteratorVector2 const& input2,
IteratorVector3 const& input3,
std::size_t min_elements, std::size_t level)
{
return boost::size(input1) >= min_elements
&& recurse_ok(input2, input3, min_elements, level);
}
template <int Dimension, typename Box>
class partition_two_ranges;
template <int Dimension, typename Box>
class partition_one_range
{
template <typename IteratorVector, typename ExpandPolicy>
static inline Box get_new_box(IteratorVector const& input,
ExpandPolicy const& expand_policy)
{
Box box;
geometry::assign_inverse(box);
expand_with_elements(box, input, expand_policy);
return box;
}
template
<
typename IteratorVector,
typename VisitPolicy,
typename ExpandPolicy,
typename OverlapsPolicy,
typename VisitBoxPolicy
>
static inline bool next_level(Box const& box,
IteratorVector const& input,
std::size_t level, std::size_t min_elements,
VisitPolicy& visitor,
ExpandPolicy const& expand_policy,
OverlapsPolicy const& overlaps_policy,
VisitBoxPolicy& box_policy)
{
if (recurse_ok(input, min_elements, level))
{
return partition_one_range
<
1 - Dimension,
Box
>::apply(box, input, level + 1, min_elements,
visitor, expand_policy, overlaps_policy, box_policy);
}
else
{
return handle_one(input, visitor);
}
}
// Function to switch to two forward ranges if there are
// geometries exceeding the separation line
template
<
typename IteratorVector,
typename VisitPolicy,
typename ExpandPolicy,
typename OverlapsPolicy,
typename VisitBoxPolicy
>
static inline bool next_level2(Box const& box,
IteratorVector const& input1,
IteratorVector const& input2,
std::size_t level, std::size_t min_elements,
VisitPolicy& visitor,
ExpandPolicy const& expand_policy,
OverlapsPolicy const& overlaps_policy,
VisitBoxPolicy& box_policy)
{
if (recurse_ok(input1, input2, min_elements, level))
{
return partition_two_ranges
<
1 - Dimension, Box
>::apply(box, input1, input2, level + 1, min_elements,
visitor, expand_policy, overlaps_policy,
expand_policy, overlaps_policy, box_policy);
}
else
{
return handle_two(input1, input2, visitor);
}
}
public :
template
<
typename IteratorVector,
typename VisitPolicy,
typename ExpandPolicy,
typename OverlapsPolicy,
typename VisitBoxPolicy
>
static inline bool apply(Box const& box,
IteratorVector const& input,
std::size_t level,
std::size_t min_elements,
VisitPolicy& visitor,
ExpandPolicy const& expand_policy,
OverlapsPolicy const& overlaps_policy,
VisitBoxPolicy& box_policy)
{
box_policy.apply(box, level);
Box lower_box, upper_box;
divide_box<Dimension>(box, lower_box, upper_box);
IteratorVector lower, upper, exceeding;
divide_into_subsets(lower_box, upper_box,
input, lower, upper, exceeding,
overlaps_policy);
if (! boost::empty(exceeding))
{
// Get the box of exceeding-only
Box exceeding_box = get_new_box(exceeding, expand_policy);
// Recursively do exceeding elements only, in next dimension they
// will probably be less exceeding within the new box
if (! (next_level(exceeding_box, exceeding, level, min_elements,
visitor, expand_policy, overlaps_policy, box_policy)
// Switch to two forward ranges, combine exceeding with
// lower resp upper, but not lower/lower, upper/upper
&& next_level2(exceeding_box, exceeding, lower, level, min_elements,
visitor, expand_policy, overlaps_policy, box_policy)
&& next_level2(exceeding_box, exceeding, upper, level, min_elements,
visitor, expand_policy, overlaps_policy, box_policy)) )
{
return false; // interrupt
}
}
// Recursively call operation both parts
return next_level(lower_box, lower, level, min_elements,
visitor, expand_policy, overlaps_policy, box_policy)
&& next_level(upper_box, upper, level, min_elements,
visitor, expand_policy, overlaps_policy, box_policy);
}
};
template
<
int Dimension,
typename Box
>
class partition_two_ranges
{
template
<
typename IteratorVector1,
typename IteratorVector2,
typename VisitPolicy,
typename ExpandPolicy1,
typename OverlapsPolicy1,
typename ExpandPolicy2,
typename OverlapsPolicy2,
typename VisitBoxPolicy
>
static inline bool next_level(Box const& box,
IteratorVector1 const& input1,
IteratorVector2 const& input2,
std::size_t level, std::size_t min_elements,
VisitPolicy& visitor,
ExpandPolicy1 const& expand_policy1,
OverlapsPolicy1 const& overlaps_policy1,
ExpandPolicy2 const& expand_policy2,
OverlapsPolicy2 const& overlaps_policy2,
VisitBoxPolicy& box_policy)
{
return partition_two_ranges
<
1 - Dimension, Box
>::apply(box, input1, input2, level + 1, min_elements,
visitor, expand_policy1, overlaps_policy1,
expand_policy2, overlaps_policy2, box_policy);
}
template <typename IteratorVector, typename ExpandPolicy>
static inline Box get_new_box(IteratorVector const& input,
ExpandPolicy const& expand_policy)
{
Box box;
geometry::assign_inverse(box);
expand_with_elements(box, input, expand_policy);
return box;
}
template
<
typename IteratorVector1, typename IteratorVector2,
typename ExpandPolicy1, typename ExpandPolicy2
>
static inline Box get_new_box(IteratorVector1 const& input1,
IteratorVector2 const& input2,
ExpandPolicy1 const& expand_policy1,
ExpandPolicy2 const& expand_policy2)
{
Box box = get_new_box(input1, expand_policy1);
expand_with_elements(box, input2, expand_policy2);
return box;
}
public :
template
<
typename IteratorVector1,
typename IteratorVector2,
typename VisitPolicy,
typename ExpandPolicy1,
typename OverlapsPolicy1,
typename ExpandPolicy2,
typename OverlapsPolicy2,
typename VisitBoxPolicy
>
static inline bool apply(Box const& box,
IteratorVector1 const& input1,
IteratorVector2 const& input2,
std::size_t level,
std::size_t min_elements,
VisitPolicy& visitor,
ExpandPolicy1 const& expand_policy1,
OverlapsPolicy1 const& overlaps_policy1,
ExpandPolicy2 const& expand_policy2,
OverlapsPolicy2 const& overlaps_policy2,
VisitBoxPolicy& box_policy)
{
box_policy.apply(box, level);
Box lower_box, upper_box;
divide_box<Dimension>(box, lower_box, upper_box);
IteratorVector1 lower1, upper1, exceeding1;
IteratorVector2 lower2, upper2, exceeding2;
divide_into_subsets(lower_box, upper_box,
input1, lower1, upper1, exceeding1,
overlaps_policy1);
divide_into_subsets(lower_box, upper_box,
input2, lower2, upper2, exceeding2,
overlaps_policy2);
if (! boost::empty(exceeding1))
{
// All exceeding from 1 with 2:
if (recurse_ok(exceeding1, exceeding2, min_elements, level))
{
Box exceeding_box = get_new_box(exceeding1, exceeding2,
expand_policy1, expand_policy2);
if (! next_level(exceeding_box, exceeding1, exceeding2, level,
min_elements, visitor, expand_policy1, overlaps_policy1,
expand_policy2, overlaps_policy2, box_policy))
{
return false; // interrupt
}
}
else
{
if (! handle_two(exceeding1, exceeding2, visitor))
{
return false; // interrupt
}
}
// All exceeding from 1 with lower and upper of 2:
// (Check sizes of all three forward ranges to avoid recurse into
// the same combinations again and again)
if (recurse_ok(lower2, upper2, exceeding1, min_elements, level))
{
Box exceeding_box = get_new_box(exceeding1, expand_policy1);
if (! (next_level(exceeding_box, exceeding1, lower2, level,
min_elements, visitor, expand_policy1, overlaps_policy1,
expand_policy2, overlaps_policy2, box_policy)
&& next_level(exceeding_box, exceeding1, upper2, level,
min_elements, visitor, expand_policy1, overlaps_policy1,
expand_policy2, overlaps_policy2, box_policy)) )
{
return false; // interrupt
}
}
else
{
if (! (handle_two(exceeding1, lower2, visitor)
&& handle_two(exceeding1, upper2, visitor)) )
{
return false; // interrupt
}
}
}
if (! boost::empty(exceeding2))
{
// All exceeding from 2 with lower and upper of 1:
if (recurse_ok(lower1, upper1, exceeding2, min_elements, level))
{
Box exceeding_box = get_new_box(exceeding2, expand_policy2);
if (! (next_level(exceeding_box, lower1, exceeding2, level,
min_elements, visitor, expand_policy1, overlaps_policy1,
expand_policy2, overlaps_policy2, box_policy)
&& next_level(exceeding_box, upper1, exceeding2, level,
min_elements, visitor, expand_policy1, overlaps_policy1,
expand_policy2, overlaps_policy2, box_policy)) )
{
return false; // interrupt
}
}
else
{
if (! (handle_two(lower1, exceeding2, visitor)
&& handle_two(upper1, exceeding2, visitor)) )
{
return false; // interrupt
}
}
}
if (recurse_ok(lower1, lower2, min_elements, level))
{
if (! next_level(lower_box, lower1, lower2, level,
min_elements, visitor, expand_policy1, overlaps_policy1,
expand_policy2, overlaps_policy2, box_policy) )
{
return false; // interrupt
}
}
else
{
if (! handle_two(lower1, lower2, visitor))
{
return false; // interrupt
}
}
if (recurse_ok(upper1, upper2, min_elements, level))
{
if (! next_level(upper_box, upper1, upper2, level,
min_elements, visitor, expand_policy1, overlaps_policy1,
expand_policy2, overlaps_policy2, box_policy) )
{
return false; // interrupt
}
}
else
{
if (! handle_two(upper1, upper2, visitor))
{
return false; // interrupt
}
}
return true;
}
};
struct visit_no_policy
{
template <typename Box>
static inline void apply(Box const&, std::size_t )
{}
};
struct include_all_policy
{
template <typename Item>
static inline bool apply(Item const&)
{
return true;
}
};
}} // namespace detail::partition
template
<
typename Box,
typename IncludePolicy1 = detail::partition::include_all_policy,
typename IncludePolicy2 = detail::partition::include_all_policy
>
class partition
{
static const std::size_t default_min_elements = 16;
template
<
typename IncludePolicy,
typename ForwardRange,
typename IteratorVector,
typename ExpandPolicy
>
static inline void expand_to_range(ForwardRange const& forward_range,
Box& total,
IteratorVector& iterator_vector,
ExpandPolicy const& expand_policy)
{
for(typename boost::range_iterator<ForwardRange const>::type
it = boost::begin(forward_range);
it != boost::end(forward_range);
++it)
{
if (IncludePolicy::apply(*it))
{
expand_policy.apply(total, *it);
iterator_vector.push_back(it);
}
}
}
public:
template
<
typename ForwardRange,
typename VisitPolicy,
typename ExpandPolicy,
typename OverlapsPolicy
>
static inline bool apply(ForwardRange const& forward_range,
VisitPolicy& visitor,
ExpandPolicy const& expand_policy,
OverlapsPolicy const& overlaps_policy)
{
return apply(forward_range, visitor, expand_policy, overlaps_policy,
default_min_elements, detail::partition::visit_no_policy());
}
template
<
typename ForwardRange,
typename VisitPolicy,
typename ExpandPolicy,
typename OverlapsPolicy
>
static inline bool apply(ForwardRange const& forward_range,
VisitPolicy& visitor,
ExpandPolicy const& expand_policy,
OverlapsPolicy const& overlaps_policy,
std::size_t min_elements)
{
return apply(forward_range, visitor, expand_policy, overlaps_policy,
min_elements, detail::partition::visit_no_policy());
}
template
<
typename ForwardRange,
typename VisitPolicy,
typename ExpandPolicy,
typename OverlapsPolicy,
typename VisitBoxPolicy
>
static inline bool apply(ForwardRange const& forward_range,
VisitPolicy& visitor,
ExpandPolicy const& expand_policy,
OverlapsPolicy const& overlaps_policy,
std::size_t min_elements,
VisitBoxPolicy box_visitor)
{
typedef typename boost::range_iterator
<
ForwardRange const
>::type iterator_type;
if (std::size_t(boost::size(forward_range)) > min_elements)
{
std::vector<iterator_type> iterator_vector;
Box total;
assign_inverse(total);
expand_to_range<IncludePolicy1>(forward_range, total,
iterator_vector, expand_policy);
return detail::partition::partition_one_range
<
0, Box
>::apply(total, iterator_vector, 0, min_elements,
visitor, expand_policy, overlaps_policy, box_visitor);
}
else
{
for(iterator_type it1 = boost::begin(forward_range);
it1 != boost::end(forward_range);
++it1)
{
iterator_type it2 = it1;
for(++it2; it2 != boost::end(forward_range); ++it2)
{
if (! visitor.apply(*it1, *it2))
{
return false; // interrupt
}
}
}
}
return true;
}
template
<
typename ForwardRange1,
typename ForwardRange2,
typename VisitPolicy,
typename ExpandPolicy1,
typename OverlapsPolicy1
>
static inline bool apply(ForwardRange1 const& forward_range1,
ForwardRange2 const& forward_range2,
VisitPolicy& visitor,
ExpandPolicy1 const& expand_policy1,
OverlapsPolicy1 const& overlaps_policy1)
{
return apply(forward_range1, forward_range2, visitor,
expand_policy1, overlaps_policy1, expand_policy1, overlaps_policy1,
default_min_elements, detail::partition::visit_no_policy());
}
template
<
typename ForwardRange1,
typename ForwardRange2,
typename VisitPolicy,
typename ExpandPolicy1,
typename OverlapsPolicy1,
typename ExpandPolicy2,
typename OverlapsPolicy2
>
static inline bool apply(ForwardRange1 const& forward_range1,
ForwardRange2 const& forward_range2,
VisitPolicy& visitor,
ExpandPolicy1 const& expand_policy1,
OverlapsPolicy1 const& overlaps_policy1,
ExpandPolicy2 const& expand_policy2,
OverlapsPolicy2 const& overlaps_policy2)
{
return apply(forward_range1, forward_range2, visitor,
expand_policy1, overlaps_policy1, expand_policy2, overlaps_policy2,
default_min_elements, detail::partition::visit_no_policy());
}
template
<
typename ForwardRange1,
typename ForwardRange2,
typename VisitPolicy,
typename ExpandPolicy1,
typename OverlapsPolicy1,
typename ExpandPolicy2,
typename OverlapsPolicy2
>
static inline bool apply(ForwardRange1 const& forward_range1,
ForwardRange2 const& forward_range2,
VisitPolicy& visitor,
ExpandPolicy1 const& expand_policy1,
OverlapsPolicy1 const& overlaps_policy1,
ExpandPolicy2 const& expand_policy2,
OverlapsPolicy2 const& overlaps_policy2,
std::size_t min_elements)
{
return apply(forward_range1, forward_range2, visitor,
expand_policy1, overlaps_policy1, expand_policy2, overlaps_policy2,
min_elements, detail::partition::visit_no_policy());
}
template
<
typename ForwardRange1,
typename ForwardRange2,
typename VisitPolicy,
typename ExpandPolicy1,
typename OverlapsPolicy1,
typename ExpandPolicy2,
typename OverlapsPolicy2,
typename VisitBoxPolicy
>
static inline bool apply(ForwardRange1 const& forward_range1,
ForwardRange2 const& forward_range2,
VisitPolicy& visitor,
ExpandPolicy1 const& expand_policy1,
OverlapsPolicy1 const& overlaps_policy1,
ExpandPolicy2 const& expand_policy2,
OverlapsPolicy2 const& overlaps_policy2,
std::size_t min_elements,
VisitBoxPolicy box_visitor)
{
typedef typename boost::range_iterator
<
ForwardRange1 const
>::type iterator_type1;
typedef typename boost::range_iterator
<
ForwardRange2 const
>::type iterator_type2;
if (std::size_t(boost::size(forward_range1)) > min_elements
&& std::size_t(boost::size(forward_range2)) > min_elements)
{
std::vector<iterator_type1> iterator_vector1;
std::vector<iterator_type2> iterator_vector2;
Box total;
assign_inverse(total);
expand_to_range<IncludePolicy1>(forward_range1, total,
iterator_vector1, expand_policy1);
expand_to_range<IncludePolicy2>(forward_range2, total,
iterator_vector2, expand_policy2);
return detail::partition::partition_two_ranges
<
0, Box
>::apply(total, iterator_vector1, iterator_vector2,
0, min_elements, visitor, expand_policy1,
overlaps_policy1, expand_policy2, overlaps_policy2,
box_visitor);
}
else
{
for(iterator_type1 it1 = boost::begin(forward_range1);
it1 != boost::end(forward_range1);
++it1)
{
for(iterator_type2 it2 = boost::begin(forward_range2);
it2 != boost::end(forward_range2);
++it2)
{
if (! visitor.apply(*it1, *it2))
{
return false; // interrupt
}
}
}
}
return true;
}
};
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_PARTITION_HPP