1059 lines
32 KiB
C++
1059 lines
32 KiB
C++
|
|
// Copyright Christopher Kormanyos 2002 - 2011.
|
|
// Copyright 2011 John Maddock.
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// This work is based on an earlier work:
|
|
// "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
|
|
// in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
|
|
//
|
|
// This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp
|
|
//
|
|
|
|
#include <boost/multiprecision/detail/standalone_config.hpp>
|
|
#include <boost/multiprecision/detail/no_exceptions_support.hpp>
|
|
#include <boost/multiprecision/detail/assert.hpp>
|
|
|
|
#ifdef BOOST_MSVC
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 6326) // comparison of two constants
|
|
#pragma warning(disable : 4127) // conditional expression is constant
|
|
#endif
|
|
|
|
template <class T>
|
|
void hyp0F1(T& result, const T& b, const T& x)
|
|
{
|
|
using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
|
|
using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
|
|
|
|
// Compute the series representation of Hypergeometric0F1 taken from
|
|
// http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1/06/01/01/
|
|
// There are no checks on input range or parameter boundaries.
|
|
|
|
T x_pow_n_div_n_fact(x);
|
|
T pochham_b(b);
|
|
T bp(b);
|
|
|
|
eval_divide(result, x_pow_n_div_n_fact, pochham_b);
|
|
eval_add(result, ui_type(1));
|
|
|
|
si_type n;
|
|
|
|
T tol;
|
|
tol = ui_type(1);
|
|
eval_ldexp(tol, tol, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
|
|
eval_multiply(tol, result);
|
|
if (eval_get_sign(tol) < 0)
|
|
tol.negate();
|
|
T term;
|
|
|
|
const int series_limit =
|
|
boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
|
|
? 100
|
|
: boost::multiprecision::detail::digits2<number<T, et_on> >::value();
|
|
// Series expansion of hyperg_0f1(; b; x).
|
|
for (n = 2; n < series_limit; ++n)
|
|
{
|
|
eval_multiply(x_pow_n_div_n_fact, x);
|
|
eval_divide(x_pow_n_div_n_fact, n);
|
|
eval_increment(bp);
|
|
eval_multiply(pochham_b, bp);
|
|
|
|
eval_divide(term, x_pow_n_div_n_fact, pochham_b);
|
|
eval_add(result, term);
|
|
|
|
bool neg_term = eval_get_sign(term) < 0;
|
|
if (neg_term)
|
|
term.negate();
|
|
if (term.compare(tol) <= 0)
|
|
break;
|
|
}
|
|
|
|
if (n >= series_limit)
|
|
BOOST_MP_THROW_EXCEPTION(std::runtime_error("H0F1 Failed to Converge"));
|
|
}
|
|
|
|
template <class T, unsigned N, bool b = boost::multiprecision::detail::is_variable_precision<boost::multiprecision::number<T> >::value>
|
|
struct scoped_N_precision
|
|
{
|
|
template <class U>
|
|
scoped_N_precision(U const&) {}
|
|
template <class U>
|
|
void reduce(U&) {}
|
|
};
|
|
|
|
template <class T, unsigned N>
|
|
struct scoped_N_precision<T, N, true>
|
|
{
|
|
unsigned old_precision, old_arg_precision;
|
|
scoped_N_precision(T& arg)
|
|
{
|
|
old_precision = T::thread_default_precision();
|
|
old_arg_precision = arg.precision();
|
|
T::thread_default_precision(old_arg_precision * N);
|
|
arg.precision(old_arg_precision * N);
|
|
}
|
|
~scoped_N_precision()
|
|
{
|
|
T::thread_default_precision(old_precision);
|
|
}
|
|
void reduce(T& arg)
|
|
{
|
|
arg.precision(old_arg_precision);
|
|
}
|
|
};
|
|
|
|
template <class T>
|
|
void reduce_n_half_pi(T& arg, const T& n, bool go_down)
|
|
{
|
|
//
|
|
// We need to perform argument reduction at 3 times the precision of arg
|
|
// in order to ensure a correct result up to arg = 1/epsilon. Beyond that
|
|
// the value of n will have been incorrectly calculated anyway since it will
|
|
// have a value greater than 1/epsilon and no longer be an exact integer value.
|
|
//
|
|
// More information in ARGUMENT REDUCTION FOR HUGE ARGUMENTS. K C Ng.
|
|
//
|
|
// There are two mutually exclusive ways to achieve this, both of which are
|
|
// supported here:
|
|
// 1) To define a fixed precision type with 3 times the precision for the calculation.
|
|
// 2) To dynamically increase the precision of the variables.
|
|
//
|
|
using reduction_type = typename boost::multiprecision::detail::transcendental_reduction_type<T>::type;
|
|
//
|
|
// Make a copy of the arg at higher precision:
|
|
//
|
|
reduction_type big_arg(arg);
|
|
//
|
|
// Dynamically increase precision when supported, this increases the default
|
|
// and ups the precision of big_arg to match:
|
|
//
|
|
scoped_N_precision<T, 3> scoped_precision(big_arg);
|
|
//
|
|
// High precision PI:
|
|
//
|
|
reduction_type reduction = get_constant_pi<reduction_type>();
|
|
eval_ldexp(reduction, reduction, -1); // divide by 2
|
|
eval_multiply(reduction, n);
|
|
|
|
BOOST_MATH_INSTRUMENT_CODE(big_arg.str(10, std::ios_base::scientific));
|
|
BOOST_MATH_INSTRUMENT_CODE(reduction.str(10, std::ios_base::scientific));
|
|
|
|
if (go_down)
|
|
eval_subtract(big_arg, reduction, big_arg);
|
|
else
|
|
eval_subtract(big_arg, reduction);
|
|
arg = T(big_arg);
|
|
//
|
|
// If arg is a variable precision type, then we have just copied the
|
|
// precision of big_arg s well it's value. Reduce the precision now:
|
|
//
|
|
scoped_precision.reduce(arg);
|
|
BOOST_MATH_INSTRUMENT_CODE(big_arg.str(10, std::ios_base::scientific));
|
|
BOOST_MATH_INSTRUMENT_CODE(arg.str(10, std::ios_base::scientific));
|
|
}
|
|
|
|
template <class T>
|
|
void eval_sin(T& result, const T& x)
|
|
{
|
|
static_assert(number_category<T>::value == number_kind_floating_point, "The sin function is only valid for floating point types.");
|
|
BOOST_MATH_INSTRUMENT_CODE(x.str(0, std::ios_base::scientific));
|
|
if (&result == &x)
|
|
{
|
|
T temp;
|
|
eval_sin(temp, x);
|
|
result = temp;
|
|
return;
|
|
}
|
|
|
|
using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
|
|
using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
|
|
using fp_type = typename std::tuple_element<0, typename T::float_types>::type ;
|
|
|
|
switch (eval_fpclassify(x))
|
|
{
|
|
case FP_INFINITE:
|
|
case FP_NAN:
|
|
BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
|
|
{
|
|
result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
|
|
errno = EDOM;
|
|
}
|
|
else
|
|
BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
|
|
return;
|
|
case FP_ZERO:
|
|
result = x;
|
|
return;
|
|
default:;
|
|
}
|
|
|
|
// Local copy of the argument
|
|
T xx = x;
|
|
|
|
// Analyze and prepare the phase of the argument.
|
|
// Make a local, positive copy of the argument, xx.
|
|
// The argument xx will be reduced to 0 <= xx <= pi/2.
|
|
bool b_negate_sin = false;
|
|
|
|
if (eval_get_sign(x) < 0)
|
|
{
|
|
xx.negate();
|
|
b_negate_sin = !b_negate_sin;
|
|
}
|
|
|
|
T n_pi, t;
|
|
T half_pi = get_constant_pi<T>();
|
|
eval_ldexp(half_pi, half_pi, -1); // divide by 2
|
|
// Remove multiples of pi/2.
|
|
if (xx.compare(half_pi) > 0)
|
|
{
|
|
eval_divide(n_pi, xx, half_pi);
|
|
eval_trunc(n_pi, n_pi);
|
|
t = ui_type(4);
|
|
eval_fmod(t, n_pi, t);
|
|
bool b_go_down = false;
|
|
if (t.compare(ui_type(1)) == 0)
|
|
{
|
|
b_go_down = true;
|
|
}
|
|
else if (t.compare(ui_type(2)) == 0)
|
|
{
|
|
b_negate_sin = !b_negate_sin;
|
|
}
|
|
else if (t.compare(ui_type(3)) == 0)
|
|
{
|
|
b_negate_sin = !b_negate_sin;
|
|
b_go_down = true;
|
|
}
|
|
|
|
if (b_go_down)
|
|
eval_increment(n_pi);
|
|
//
|
|
// If n_pi is > 1/epsilon, then it is no longer an exact integer value
|
|
// but an approximation. As a result we can no longer reliably reduce
|
|
// xx to 0 <= xx < pi/2, nor can we tell the sign of the result as we need
|
|
// n_pi % 4 for that, but that will always be zero in this situation.
|
|
// We could use a higher precision type for n_pi, along with division at
|
|
// higher precision, but that's rather expensive. So for now we do not support
|
|
// this, and will see if anyone complains and has a legitimate use case.
|
|
//
|
|
if (n_pi.compare(get_constant_one_over_epsilon<T>()) > 0)
|
|
{
|
|
result = ui_type(0);
|
|
return;
|
|
}
|
|
|
|
reduce_n_half_pi(xx, n_pi, b_go_down);
|
|
//
|
|
// Post reduction we may be a few ulp below zero or above pi/2
|
|
// given that n_pi was calculated at working precision and not
|
|
// at the higher precision used for reduction. Correct that now:
|
|
//
|
|
if (eval_get_sign(xx) < 0)
|
|
{
|
|
xx.negate();
|
|
b_negate_sin = !b_negate_sin;
|
|
}
|
|
if (xx.compare(half_pi) > 0)
|
|
{
|
|
eval_ldexp(half_pi, half_pi, 1);
|
|
eval_subtract(xx, half_pi, xx);
|
|
eval_ldexp(half_pi, half_pi, -1);
|
|
b_go_down = !b_go_down;
|
|
}
|
|
|
|
BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
|
|
BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific));
|
|
BOOST_MP_ASSERT(xx.compare(half_pi) <= 0);
|
|
BOOST_MP_ASSERT(xx.compare(ui_type(0)) >= 0);
|
|
}
|
|
|
|
t = half_pi;
|
|
eval_subtract(t, xx);
|
|
|
|
const bool b_zero = eval_get_sign(xx) == 0;
|
|
const bool b_pi_half = eval_get_sign(t) == 0;
|
|
|
|
BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
|
|
BOOST_MATH_INSTRUMENT_CODE(t.str(0, std::ios_base::scientific));
|
|
|
|
// Check if the reduced argument is very close to 0 or pi/2.
|
|
const bool b_near_zero = xx.compare(fp_type(1e-1)) < 0;
|
|
const bool b_near_pi_half = t.compare(fp_type(1e-1)) < 0;
|
|
|
|
if (b_zero)
|
|
{
|
|
result = ui_type(0);
|
|
}
|
|
else if (b_pi_half)
|
|
{
|
|
result = ui_type(1);
|
|
}
|
|
else if (b_near_zero)
|
|
{
|
|
eval_multiply(t, xx, xx);
|
|
eval_divide(t, si_type(-4));
|
|
T t2;
|
|
t2 = fp_type(1.5);
|
|
hyp0F1(result, t2, t);
|
|
BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
|
|
eval_multiply(result, xx);
|
|
}
|
|
else if (b_near_pi_half)
|
|
{
|
|
eval_multiply(t, t);
|
|
eval_divide(t, si_type(-4));
|
|
T t2;
|
|
t2 = fp_type(0.5);
|
|
hyp0F1(result, t2, t);
|
|
BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
|
|
}
|
|
else
|
|
{
|
|
// Scale to a small argument for an efficient Taylor series,
|
|
// implemented as a hypergeometric function. Use a standard
|
|
// divide by three identity a certain number of times.
|
|
// Here we use division by 3^9 --> (19683 = 3^9).
|
|
|
|
constexpr si_type n_scale = 9;
|
|
constexpr si_type n_three_pow_scale = static_cast<si_type>(19683L);
|
|
|
|
eval_divide(xx, n_three_pow_scale);
|
|
|
|
// Now with small arguments, we are ready for a series expansion.
|
|
eval_multiply(t, xx, xx);
|
|
eval_divide(t, si_type(-4));
|
|
T t2;
|
|
t2 = fp_type(1.5);
|
|
hyp0F1(result, t2, t);
|
|
BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
|
|
eval_multiply(result, xx);
|
|
|
|
// Convert back using multiple angle identity.
|
|
for (std::int32_t k = static_cast<std::int32_t>(0); k < n_scale; k++)
|
|
{
|
|
// Rescale the cosine value using the multiple angle identity.
|
|
eval_multiply(t2, result, ui_type(3));
|
|
eval_multiply(t, result, result);
|
|
eval_multiply(t, result);
|
|
eval_multiply(t, ui_type(4));
|
|
eval_subtract(result, t2, t);
|
|
}
|
|
}
|
|
|
|
if (b_negate_sin)
|
|
result.negate();
|
|
BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
|
|
}
|
|
|
|
template <class T>
|
|
void eval_cos(T& result, const T& x)
|
|
{
|
|
static_assert(number_category<T>::value == number_kind_floating_point, "The cos function is only valid for floating point types.");
|
|
if (&result == &x)
|
|
{
|
|
T temp;
|
|
eval_cos(temp, x);
|
|
result = temp;
|
|
return;
|
|
}
|
|
|
|
using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
|
|
using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
|
|
|
|
switch (eval_fpclassify(x))
|
|
{
|
|
case FP_INFINITE:
|
|
case FP_NAN:
|
|
BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
|
|
{
|
|
result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
|
|
errno = EDOM;
|
|
}
|
|
else
|
|
BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
|
|
return;
|
|
case FP_ZERO:
|
|
result = ui_type(1);
|
|
return;
|
|
default:;
|
|
}
|
|
|
|
// Local copy of the argument
|
|
T xx = x;
|
|
|
|
// Analyze and prepare the phase of the argument.
|
|
// Make a local, positive copy of the argument, xx.
|
|
// The argument xx will be reduced to 0 <= xx <= pi/2.
|
|
bool b_negate_cos = false;
|
|
|
|
if (eval_get_sign(x) < 0)
|
|
{
|
|
xx.negate();
|
|
}
|
|
BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
|
|
|
|
T n_pi, t;
|
|
T half_pi = get_constant_pi<T>();
|
|
eval_ldexp(half_pi, half_pi, -1); // divide by 2
|
|
// Remove even multiples of pi.
|
|
if (xx.compare(half_pi) > 0)
|
|
{
|
|
eval_divide(t, xx, half_pi);
|
|
eval_trunc(n_pi, t);
|
|
//
|
|
// If n_pi is > 1/epsilon, then it is no longer an exact integer value
|
|
// but an approximation. As a result we can no longer reliably reduce
|
|
// xx to 0 <= xx < pi/2, nor can we tell the sign of the result as we need
|
|
// n_pi % 4 for that, but that will always be zero in this situation.
|
|
// We could use a higher precision type for n_pi, along with division at
|
|
// higher precision, but that's rather expensive. So for now we do not support
|
|
// this, and will see if anyone complains and has a legitimate use case.
|
|
//
|
|
if (n_pi.compare(get_constant_one_over_epsilon<T>()) > 0)
|
|
{
|
|
result = ui_type(1);
|
|
return;
|
|
}
|
|
BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific));
|
|
t = ui_type(4);
|
|
eval_fmod(t, n_pi, t);
|
|
|
|
bool b_go_down = false;
|
|
if (t.compare(ui_type(0)) == 0)
|
|
{
|
|
b_go_down = true;
|
|
}
|
|
else if (t.compare(ui_type(1)) == 0)
|
|
{
|
|
b_negate_cos = true;
|
|
}
|
|
else if (t.compare(ui_type(2)) == 0)
|
|
{
|
|
b_go_down = true;
|
|
b_negate_cos = true;
|
|
}
|
|
else
|
|
{
|
|
BOOST_MP_ASSERT(t.compare(ui_type(3)) == 0);
|
|
}
|
|
|
|
if (b_go_down)
|
|
eval_increment(n_pi);
|
|
|
|
reduce_n_half_pi(xx, n_pi, b_go_down);
|
|
//
|
|
// Post reduction we may be a few ulp below zero or above pi/2
|
|
// given that n_pi was calculated at working precision and not
|
|
// at the higher precision used for reduction. Correct that now:
|
|
//
|
|
if (eval_get_sign(xx) < 0)
|
|
{
|
|
xx.negate();
|
|
b_negate_cos = !b_negate_cos;
|
|
}
|
|
if (xx.compare(half_pi) > 0)
|
|
{
|
|
eval_ldexp(half_pi, half_pi, 1);
|
|
eval_subtract(xx, half_pi, xx);
|
|
eval_ldexp(half_pi, half_pi, -1);
|
|
}
|
|
BOOST_MP_ASSERT(xx.compare(half_pi) <= 0);
|
|
BOOST_MP_ASSERT(xx.compare(ui_type(0)) >= 0);
|
|
}
|
|
else
|
|
{
|
|
n_pi = ui_type(1);
|
|
reduce_n_half_pi(xx, n_pi, true);
|
|
}
|
|
|
|
const bool b_zero = eval_get_sign(xx) == 0;
|
|
|
|
if (b_zero)
|
|
{
|
|
result = si_type(0);
|
|
}
|
|
else
|
|
{
|
|
eval_sin(result, xx);
|
|
}
|
|
if (b_negate_cos)
|
|
result.negate();
|
|
BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
|
|
}
|
|
|
|
template <class T>
|
|
void eval_tan(T& result, const T& x)
|
|
{
|
|
static_assert(number_category<T>::value == number_kind_floating_point, "The tan function is only valid for floating point types.");
|
|
if (&result == &x)
|
|
{
|
|
T temp;
|
|
eval_tan(temp, x);
|
|
result = temp;
|
|
return;
|
|
}
|
|
T t;
|
|
eval_sin(result, x);
|
|
eval_cos(t, x);
|
|
eval_divide(result, t);
|
|
}
|
|
|
|
template <class T>
|
|
void hyp2F1(T& result, const T& a, const T& b, const T& c, const T& x)
|
|
{
|
|
// Compute the series representation of hyperg_2f1 taken from
|
|
// Abramowitz and Stegun 15.1.1.
|
|
// There are no checks on input range or parameter boundaries.
|
|
|
|
using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
|
|
|
|
T x_pow_n_div_n_fact(x);
|
|
T pochham_a(a);
|
|
T pochham_b(b);
|
|
T pochham_c(c);
|
|
T ap(a);
|
|
T bp(b);
|
|
T cp(c);
|
|
|
|
eval_multiply(result, pochham_a, pochham_b);
|
|
eval_divide(result, pochham_c);
|
|
eval_multiply(result, x_pow_n_div_n_fact);
|
|
eval_add(result, ui_type(1));
|
|
|
|
T lim;
|
|
eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
|
|
|
|
if (eval_get_sign(lim) < 0)
|
|
lim.negate();
|
|
|
|
ui_type n;
|
|
T term;
|
|
|
|
const unsigned series_limit =
|
|
boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
|
|
? 100
|
|
: boost::multiprecision::detail::digits2<number<T, et_on> >::value();
|
|
// Series expansion of hyperg_2f1(a, b; c; x).
|
|
for (n = 2; n < series_limit; ++n)
|
|
{
|
|
eval_multiply(x_pow_n_div_n_fact, x);
|
|
eval_divide(x_pow_n_div_n_fact, n);
|
|
|
|
eval_increment(ap);
|
|
eval_multiply(pochham_a, ap);
|
|
eval_increment(bp);
|
|
eval_multiply(pochham_b, bp);
|
|
eval_increment(cp);
|
|
eval_multiply(pochham_c, cp);
|
|
|
|
eval_multiply(term, pochham_a, pochham_b);
|
|
eval_divide(term, pochham_c);
|
|
eval_multiply(term, x_pow_n_div_n_fact);
|
|
eval_add(result, term);
|
|
|
|
if (eval_get_sign(term) < 0)
|
|
term.negate();
|
|
if (lim.compare(term) >= 0)
|
|
break;
|
|
}
|
|
if (n > series_limit)
|
|
BOOST_MP_THROW_EXCEPTION(std::runtime_error("H2F1 failed to converge."));
|
|
}
|
|
|
|
template <class T>
|
|
void eval_asin(T& result, const T& x)
|
|
{
|
|
static_assert(number_category<T>::value == number_kind_floating_point, "The asin function is only valid for floating point types.");
|
|
using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
|
|
using fp_type = typename std::tuple_element<0, typename T::float_types>::type ;
|
|
|
|
if (&result == &x)
|
|
{
|
|
T t(x);
|
|
eval_asin(result, t);
|
|
return;
|
|
}
|
|
|
|
switch (eval_fpclassify(x))
|
|
{
|
|
case FP_NAN:
|
|
case FP_INFINITE:
|
|
BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
|
|
{
|
|
result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
|
|
errno = EDOM;
|
|
}
|
|
else
|
|
BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
|
|
return;
|
|
case FP_ZERO:
|
|
result = x;
|
|
return;
|
|
default:;
|
|
}
|
|
|
|
const bool b_neg = eval_get_sign(x) < 0;
|
|
|
|
T xx(x);
|
|
if (b_neg)
|
|
xx.negate();
|
|
|
|
int c = xx.compare(ui_type(1));
|
|
if (c > 0)
|
|
{
|
|
BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
|
|
{
|
|
result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
|
|
errno = EDOM;
|
|
}
|
|
else
|
|
BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
|
|
return;
|
|
}
|
|
else if (c == 0)
|
|
{
|
|
result = get_constant_pi<T>();
|
|
eval_ldexp(result, result, -1);
|
|
if (b_neg)
|
|
result.negate();
|
|
return;
|
|
}
|
|
|
|
if (xx.compare(fp_type(1e-3)) < 0)
|
|
{
|
|
// http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/
|
|
eval_multiply(xx, xx);
|
|
T t1, t2;
|
|
t1 = fp_type(0.5f);
|
|
t2 = fp_type(1.5f);
|
|
hyp2F1(result, t1, t1, t2, xx);
|
|
eval_multiply(result, x);
|
|
return;
|
|
}
|
|
else if (xx.compare(fp_type(1 - 5e-2f)) > 0)
|
|
{
|
|
// http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/
|
|
// This branch is simlilar in complexity to Newton iterations down to
|
|
// the above limit. It is *much* more accurate.
|
|
T dx1;
|
|
T t1, t2;
|
|
eval_subtract(dx1, ui_type(1), xx);
|
|
t1 = fp_type(0.5f);
|
|
t2 = fp_type(1.5f);
|
|
eval_ldexp(dx1, dx1, -1);
|
|
hyp2F1(result, t1, t1, t2, dx1);
|
|
eval_ldexp(dx1, dx1, 2);
|
|
eval_sqrt(t1, dx1);
|
|
eval_multiply(result, t1);
|
|
eval_ldexp(t1, get_constant_pi<T>(), -1);
|
|
result.negate();
|
|
eval_add(result, t1);
|
|
if (b_neg)
|
|
result.negate();
|
|
return;
|
|
}
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
using guess_type = typename boost::multiprecision::detail::canonical<long double, T>::type;
|
|
#else
|
|
using guess_type = fp_type;
|
|
#endif
|
|
// Get initial estimate using standard math function asin.
|
|
guess_type dd;
|
|
eval_convert_to(&dd, xx);
|
|
|
|
result = (guess_type)(std::asin(dd));
|
|
|
|
// Newton-Raphson iteration, we should double our precision with each iteration,
|
|
// in practice this seems to not quite work in all cases... so terminate when we
|
|
// have at least 2/3 of the digits correct on the assumption that the correction
|
|
// we've just added will finish the job...
|
|
|
|
std::intmax_t current_precision = eval_ilogb(result);
|
|
std::intmax_t target_precision = std::numeric_limits<number<T> >::is_specialized ?
|
|
current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3
|
|
: current_precision - 1 - (boost::multiprecision::detail::digits2<number<T> >::value() * 2) / 3;
|
|
|
|
// Newton-Raphson iteration
|
|
while (current_precision > target_precision)
|
|
{
|
|
T sine, cosine;
|
|
eval_sin(sine, result);
|
|
eval_cos(cosine, result);
|
|
eval_subtract(sine, xx);
|
|
eval_divide(sine, cosine);
|
|
eval_subtract(result, sine);
|
|
current_precision = eval_ilogb(sine);
|
|
if (current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1)
|
|
break;
|
|
}
|
|
if (b_neg)
|
|
result.negate();
|
|
}
|
|
|
|
template <class T>
|
|
inline void eval_acos(T& result, const T& x)
|
|
{
|
|
static_assert(number_category<T>::value == number_kind_floating_point, "The acos function is only valid for floating point types.");
|
|
using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
|
|
|
|
switch (eval_fpclassify(x))
|
|
{
|
|
case FP_NAN:
|
|
case FP_INFINITE:
|
|
BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
|
|
{
|
|
result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
|
|
errno = EDOM;
|
|
}
|
|
else
|
|
BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
|
|
return;
|
|
case FP_ZERO:
|
|
result = get_constant_pi<T>();
|
|
eval_ldexp(result, result, -1); // divide by two.
|
|
return;
|
|
}
|
|
|
|
T xx;
|
|
eval_abs(xx, x);
|
|
int c = xx.compare(ui_type(1));
|
|
|
|
if (c > 0)
|
|
{
|
|
BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
|
|
{
|
|
result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
|
|
errno = EDOM;
|
|
}
|
|
else
|
|
BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
|
|
return;
|
|
}
|
|
else if (c == 0)
|
|
{
|
|
if (eval_get_sign(x) < 0)
|
|
result = get_constant_pi<T>();
|
|
else
|
|
result = ui_type(0);
|
|
return;
|
|
}
|
|
|
|
using fp_type = typename std::tuple_element<0, typename T::float_types>::type;
|
|
|
|
if (xx.compare(fp_type(1e-3)) < 0)
|
|
{
|
|
// https://functions.wolfram.com/ElementaryFunctions/ArcCos/26/01/01/
|
|
eval_multiply(xx, xx);
|
|
T t1, t2;
|
|
t1 = fp_type(0.5f);
|
|
t2 = fp_type(1.5f);
|
|
hyp2F1(result, t1, t1, t2, xx);
|
|
eval_multiply(result, x);
|
|
eval_ldexp(t1, get_constant_pi<T>(), -1);
|
|
result.negate();
|
|
eval_add(result, t1);
|
|
return;
|
|
}
|
|
if (eval_get_sign(x) < 0)
|
|
{
|
|
eval_acos(result, xx);
|
|
result.negate();
|
|
eval_add(result, get_constant_pi<T>());
|
|
return;
|
|
}
|
|
else if (xx.compare(fp_type(0.85)) > 0)
|
|
{
|
|
// https://functions.wolfram.com/ElementaryFunctions/ArcCos/26/01/01/
|
|
// This branch is simlilar in complexity to Newton iterations down to
|
|
// the above limit. It is *much* more accurate.
|
|
T dx1;
|
|
T t1, t2;
|
|
eval_subtract(dx1, ui_type(1), xx);
|
|
t1 = fp_type(0.5f);
|
|
t2 = fp_type(1.5f);
|
|
eval_ldexp(dx1, dx1, -1);
|
|
hyp2F1(result, t1, t1, t2, dx1);
|
|
eval_ldexp(dx1, dx1, 2);
|
|
eval_sqrt(t1, dx1);
|
|
eval_multiply(result, t1);
|
|
return;
|
|
}
|
|
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
using guess_type = typename boost::multiprecision::detail::canonical<long double, T>::type;
|
|
#else
|
|
using guess_type = fp_type;
|
|
#endif
|
|
// Get initial estimate using standard math function asin.
|
|
guess_type dd;
|
|
eval_convert_to(&dd, xx);
|
|
|
|
result = (guess_type)(std::acos(dd));
|
|
|
|
// Newton-Raphson iteration, we should double our precision with each iteration,
|
|
// in practice this seems to not quite work in all cases... so terminate when we
|
|
// have at least 2/3 of the digits correct on the assumption that the correction
|
|
// we've just added will finish the job...
|
|
|
|
std::intmax_t current_precision = eval_ilogb(result);
|
|
std::intmax_t target_precision = std::numeric_limits<number<T> >::is_specialized ?
|
|
current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3
|
|
: current_precision - 1 - (boost::multiprecision::detail::digits2<number<T> >::value() * 2) / 3;
|
|
|
|
// Newton-Raphson iteration
|
|
while (current_precision > target_precision)
|
|
{
|
|
T sine, cosine;
|
|
eval_sin(sine, result);
|
|
eval_cos(cosine, result);
|
|
eval_subtract(cosine, xx);
|
|
cosine.negate();
|
|
eval_divide(cosine, sine);
|
|
eval_subtract(result, cosine);
|
|
current_precision = eval_ilogb(cosine);
|
|
if (current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1)
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void eval_atan(T& result, const T& x)
|
|
{
|
|
static_assert(number_category<T>::value == number_kind_floating_point, "The atan function is only valid for floating point types.");
|
|
using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
|
|
using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
|
|
using fp_type = typename std::tuple_element<0, typename T::float_types>::type ;
|
|
|
|
switch (eval_fpclassify(x))
|
|
{
|
|
case FP_NAN:
|
|
result = x;
|
|
errno = EDOM;
|
|
return;
|
|
case FP_ZERO:
|
|
result = x;
|
|
return;
|
|
case FP_INFINITE:
|
|
if (eval_get_sign(x) < 0)
|
|
{
|
|
eval_ldexp(result, get_constant_pi<T>(), -1);
|
|
result.negate();
|
|
}
|
|
else
|
|
eval_ldexp(result, get_constant_pi<T>(), -1);
|
|
return;
|
|
default:;
|
|
}
|
|
|
|
const bool b_neg = eval_get_sign(x) < 0;
|
|
|
|
T xx(x);
|
|
if (b_neg)
|
|
xx.negate();
|
|
|
|
if (xx.compare(fp_type(0.1)) < 0)
|
|
{
|
|
T t1, t2, t3;
|
|
t1 = ui_type(1);
|
|
t2 = fp_type(0.5f);
|
|
t3 = fp_type(1.5f);
|
|
eval_multiply(xx, xx);
|
|
xx.negate();
|
|
hyp2F1(result, t1, t2, t3, xx);
|
|
eval_multiply(result, x);
|
|
return;
|
|
}
|
|
|
|
if (xx.compare(fp_type(10)) > 0)
|
|
{
|
|
T t1, t2, t3;
|
|
t1 = fp_type(0.5f);
|
|
t2 = ui_type(1u);
|
|
t3 = fp_type(1.5f);
|
|
eval_multiply(xx, xx);
|
|
eval_divide(xx, si_type(-1), xx);
|
|
hyp2F1(result, t1, t2, t3, xx);
|
|
eval_divide(result, x);
|
|
if (!b_neg)
|
|
result.negate();
|
|
eval_ldexp(t1, get_constant_pi<T>(), -1);
|
|
eval_add(result, t1);
|
|
if (b_neg)
|
|
result.negate();
|
|
return;
|
|
}
|
|
|
|
// Get initial estimate using standard math function atan.
|
|
fp_type d;
|
|
eval_convert_to(&d, xx);
|
|
result = fp_type(std::atan(d));
|
|
|
|
// Newton-Raphson iteration, we should double our precision with each iteration,
|
|
// in practice this seems to not quite work in all cases... so terminate when we
|
|
// have at least 2/3 of the digits correct on the assumption that the correction
|
|
// we've just added will finish the job...
|
|
|
|
std::intmax_t current_precision = eval_ilogb(result);
|
|
std::intmax_t target_precision = std::numeric_limits<number<T> >::is_specialized ?
|
|
current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3
|
|
: current_precision - 1 - (boost::multiprecision::detail::digits2<number<T> >::value() * 2) / 3;
|
|
|
|
T s, c, t;
|
|
while (current_precision > target_precision)
|
|
{
|
|
eval_sin(s, result);
|
|
eval_cos(c, result);
|
|
eval_multiply(t, xx, c);
|
|
eval_subtract(t, s);
|
|
eval_multiply(s, t, c);
|
|
eval_add(result, s);
|
|
current_precision = eval_ilogb(s);
|
|
if (current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1)
|
|
break;
|
|
}
|
|
if (b_neg)
|
|
result.negate();
|
|
}
|
|
|
|
template <class T>
|
|
void eval_atan2(T& result, const T& y, const T& x)
|
|
{
|
|
static_assert(number_category<T>::value == number_kind_floating_point, "The atan2 function is only valid for floating point types.");
|
|
if (&result == &y)
|
|
{
|
|
T temp(y);
|
|
eval_atan2(result, temp, x);
|
|
return;
|
|
}
|
|
else if (&result == &x)
|
|
{
|
|
T temp(x);
|
|
eval_atan2(result, y, temp);
|
|
return;
|
|
}
|
|
|
|
using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
|
|
|
|
switch (eval_fpclassify(y))
|
|
{
|
|
case FP_NAN:
|
|
result = y;
|
|
errno = EDOM;
|
|
return;
|
|
case FP_ZERO:
|
|
{
|
|
if (eval_signbit(x))
|
|
{
|
|
result = get_constant_pi<T>();
|
|
if (eval_signbit(y))
|
|
result.negate();
|
|
}
|
|
else
|
|
{
|
|
result = y; // Note we allow atan2(0,0) to be +-zero, even though it's mathematically undefined
|
|
}
|
|
return;
|
|
}
|
|
case FP_INFINITE:
|
|
{
|
|
if (eval_fpclassify(x) == FP_INFINITE)
|
|
{
|
|
if (eval_signbit(x))
|
|
{
|
|
// 3Pi/4
|
|
eval_ldexp(result, get_constant_pi<T>(), -2);
|
|
eval_subtract(result, get_constant_pi<T>());
|
|
if (eval_get_sign(y) >= 0)
|
|
result.negate();
|
|
}
|
|
else
|
|
{
|
|
// Pi/4
|
|
eval_ldexp(result, get_constant_pi<T>(), -2);
|
|
if (eval_get_sign(y) < 0)
|
|
result.negate();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
eval_ldexp(result, get_constant_pi<T>(), -1);
|
|
if (eval_get_sign(y) < 0)
|
|
result.negate();
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (eval_fpclassify(x))
|
|
{
|
|
case FP_NAN:
|
|
result = x;
|
|
errno = EDOM;
|
|
return;
|
|
case FP_ZERO:
|
|
{
|
|
eval_ldexp(result, get_constant_pi<T>(), -1);
|
|
if (eval_get_sign(y) < 0)
|
|
result.negate();
|
|
return;
|
|
}
|
|
case FP_INFINITE:
|
|
if (eval_get_sign(x) > 0)
|
|
result = ui_type(0);
|
|
else
|
|
result = get_constant_pi<T>();
|
|
if (eval_get_sign(y) < 0)
|
|
result.negate();
|
|
return;
|
|
}
|
|
|
|
T xx;
|
|
eval_divide(xx, y, x);
|
|
if (eval_get_sign(xx) < 0)
|
|
xx.negate();
|
|
|
|
eval_atan(result, xx);
|
|
|
|
// Determine quadrant (sign) based on signs of x, y
|
|
const bool y_neg = eval_get_sign(y) < 0;
|
|
const bool x_neg = eval_get_sign(x) < 0;
|
|
|
|
if (y_neg != x_neg)
|
|
result.negate();
|
|
|
|
if (x_neg)
|
|
{
|
|
if (y_neg)
|
|
eval_subtract(result, get_constant_pi<T>());
|
|
else
|
|
eval_add(result, get_constant_pi<T>());
|
|
}
|
|
}
|
|
template <class T, class A>
|
|
inline typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A>::value, void>::type eval_atan2(T& result, const T& x, const A& a)
|
|
{
|
|
using canonical_type = typename boost::multiprecision::detail::canonical<A, T>::type ;
|
|
using cast_type = typename std::conditional<std::is_same<A, canonical_type>::value, T, canonical_type>::type;
|
|
cast_type c;
|
|
c = a;
|
|
eval_atan2(result, x, c);
|
|
}
|
|
|
|
template <class T, class A>
|
|
inline typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A>::value, void>::type eval_atan2(T& result, const A& x, const T& a)
|
|
{
|
|
using canonical_type = typename boost::multiprecision::detail::canonical<A, T>::type ;
|
|
using cast_type = typename std::conditional<std::is_same<A, canonical_type>::value, T, canonical_type>::type;
|
|
cast_type c;
|
|
c = x;
|
|
eval_atan2(result, c, a);
|
|
}
|
|
|
|
#ifdef BOOST_MSVC
|
|
#pragma warning(pop)
|
|
#endif
|