libcarla/include/system/boost/math/tools/univariate_statistics.hpp
2024-10-18 13:19:59 +08:00

430 lines
12 KiB
C++

// (C) Copyright Nick Thompson 2018.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_UNIVARIATE_STATISTICS_HPP
#define BOOST_MATH_TOOLS_UNIVARIATE_STATISTICS_HPP
#include <algorithm>
#include <iterator>
#include <tuple>
#include <boost/math/tools/assert.hpp>
#include <boost/math/tools/header_deprecated.hpp>
BOOST_MATH_HEADER_DEPRECATED("<boost/math/statistics/univariate_statistics.hpp>");
namespace boost::math::tools {
template<class ForwardIterator>
auto mean(ForwardIterator first, ForwardIterator last)
{
using Real = typename std::iterator_traits<ForwardIterator>::value_type;
BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the mean.");
if constexpr (std::is_integral<Real>::value)
{
double mu = 0;
double i = 1;
for(auto it = first; it != last; ++it) {
mu = mu + (*it - mu)/i;
i += 1;
}
return mu;
}
else if constexpr (std::is_same_v<typename std::iterator_traits<ForwardIterator>::iterator_category, std::random_access_iterator_tag>)
{
size_t elements = std::distance(first, last);
Real mu0 = 0;
Real mu1 = 0;
Real mu2 = 0;
Real mu3 = 0;
Real i = 1;
auto end = last - (elements % 4);
for(auto it = first; it != end; it += 4) {
Real inv = Real(1)/i;
Real tmp0 = (*it - mu0);
Real tmp1 = (*(it+1) - mu1);
Real tmp2 = (*(it+2) - mu2);
Real tmp3 = (*(it+3) - mu3);
// please generate a vectorized fma here
mu0 += tmp0*inv;
mu1 += tmp1*inv;
mu2 += tmp2*inv;
mu3 += tmp3*inv;
i += 1;
}
Real num1 = Real(elements - (elements %4))/Real(4);
Real num2 = num1 + Real(elements % 4);
for (auto it = end; it != last; ++it)
{
mu3 += (*it-mu3)/i;
i += 1;
}
return (num1*(mu0+mu1+mu2) + num2*mu3)/Real(elements);
}
else
{
auto it = first;
Real mu = *it;
Real i = 2;
while(++it != last)
{
mu += (*it - mu)/i;
i += 1;
}
return mu;
}
}
template<class Container>
inline auto mean(Container const & v)
{
return mean(v.cbegin(), v.cend());
}
template<class ForwardIterator>
auto variance(ForwardIterator first, ForwardIterator last)
{
using Real = typename std::iterator_traits<ForwardIterator>::value_type;
BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute mean and variance.");
// Higham, Accuracy and Stability, equation 1.6a and 1.6b:
if constexpr (std::is_integral<Real>::value)
{
double M = *first;
double Q = 0;
double k = 2;
for (auto it = std::next(first); it != last; ++it)
{
double tmp = *it - M;
Q = Q + ((k-1)*tmp*tmp)/k;
M = M + tmp/k;
k += 1;
}
return Q/(k-1);
}
else
{
Real M = *first;
Real Q = 0;
Real k = 2;
for (auto it = std::next(first); it != last; ++it)
{
Real tmp = (*it - M)/k;
Q += k*(k-1)*tmp*tmp;
M += tmp;
k += 1;
}
return Q/(k-1);
}
}
template<class Container>
inline auto variance(Container const & v)
{
return variance(v.cbegin(), v.cend());
}
template<class ForwardIterator>
auto sample_variance(ForwardIterator first, ForwardIterator last)
{
size_t n = std::distance(first, last);
BOOST_MATH_ASSERT_MSG(n > 1, "At least two samples are required to compute the sample variance.");
return n*variance(first, last)/(n-1);
}
template<class Container>
inline auto sample_variance(Container const & v)
{
return sample_variance(v.cbegin(), v.cend());
}
// Follows equation 1.5 of:
// https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf
template<class ForwardIterator>
auto skewness(ForwardIterator first, ForwardIterator last)
{
using Real = typename std::iterator_traits<ForwardIterator>::value_type;
BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute skewness.");
if constexpr (std::is_integral<Real>::value)
{
double M1 = *first;
double M2 = 0;
double M3 = 0;
double n = 2;
for (auto it = std::next(first); it != last; ++it)
{
double delta21 = *it - M1;
double tmp = delta21/n;
M3 = M3 + tmp*((n-1)*(n-2)*delta21*tmp - 3*M2);
M2 = M2 + tmp*(n-1)*delta21;
M1 = M1 + tmp;
n += 1;
}
double var = M2/(n-1);
if (var == 0)
{
// The limit is technically undefined, but the interpretation here is clear:
// A constant dataset has no skewness.
return double(0);
}
double skew = M3/(M2*sqrt(var));
return skew;
}
else
{
Real M1 = *first;
Real M2 = 0;
Real M3 = 0;
Real n = 2;
for (auto it = std::next(first); it != last; ++it)
{
Real delta21 = *it - M1;
Real tmp = delta21/n;
M3 += tmp*((n-1)*(n-2)*delta21*tmp - 3*M2);
M2 += tmp*(n-1)*delta21;
M1 += tmp;
n += 1;
}
Real var = M2/(n-1);
if (var == 0)
{
// The limit is technically undefined, but the interpretation here is clear:
// A constant dataset has no skewness.
return Real(0);
}
Real skew = M3/(M2*sqrt(var));
return skew;
}
}
template<class Container>
inline auto skewness(Container const & v)
{
return skewness(v.cbegin(), v.cend());
}
// Follows equation 1.5/1.6 of:
// https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf
template<class ForwardIterator>
auto first_four_moments(ForwardIterator first, ForwardIterator last)
{
using Real = typename std::iterator_traits<ForwardIterator>::value_type;
BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the first four moments.");
if constexpr (std::is_integral<Real>::value)
{
double M1 = *first;
double M2 = 0;
double M3 = 0;
double M4 = 0;
double n = 2;
for (auto it = std::next(first); it != last; ++it)
{
double delta21 = *it - M1;
double tmp = delta21/n;
M4 = M4 + tmp*(tmp*tmp*delta21*((n-1)*(n*n-3*n+3)) + 6*tmp*M2 - 4*M3);
M3 = M3 + tmp*((n-1)*(n-2)*delta21*tmp - 3*M2);
M2 = M2 + tmp*(n-1)*delta21;
M1 = M1 + tmp;
n += 1;
}
return std::make_tuple(M1, M2/(n-1), M3/(n-1), M4/(n-1));
}
else
{
Real M1 = *first;
Real M2 = 0;
Real M3 = 0;
Real M4 = 0;
Real n = 2;
for (auto it = std::next(first); it != last; ++it)
{
Real delta21 = *it - M1;
Real tmp = delta21/n;
M4 = M4 + tmp*(tmp*tmp*delta21*((n-1)*(n*n-3*n+3)) + 6*tmp*M2 - 4*M3);
M3 = M3 + tmp*((n-1)*(n-2)*delta21*tmp - 3*M2);
M2 = M2 + tmp*(n-1)*delta21;
M1 = M1 + tmp;
n += 1;
}
return std::make_tuple(M1, M2/(n-1), M3/(n-1), M4/(n-1));
}
}
template<class Container>
inline auto first_four_moments(Container const & v)
{
return first_four_moments(v.cbegin(), v.cend());
}
// Follows equation 1.6 of:
// https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf
template<class ForwardIterator>
auto kurtosis(ForwardIterator first, ForwardIterator last)
{
auto [M1, M2, M3, M4] = first_four_moments(first, last);
if (M2 == 0)
{
return M2;
}
return M4/(M2*M2);
}
template<class Container>
inline auto kurtosis(Container const & v)
{
return kurtosis(v.cbegin(), v.cend());
}
template<class ForwardIterator>
auto excess_kurtosis(ForwardIterator first, ForwardIterator last)
{
return kurtosis(first, last) - 3;
}
template<class Container>
inline auto excess_kurtosis(Container const & v)
{
return excess_kurtosis(v.cbegin(), v.cend());
}
template<class RandomAccessIterator>
auto median(RandomAccessIterator first, RandomAccessIterator last)
{
size_t num_elems = std::distance(first, last);
BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero length vector is undefined.");
if (num_elems & 1)
{
auto middle = first + (num_elems - 1)/2;
std::nth_element(first, middle, last);
return *middle;
}
else
{
auto middle = first + num_elems/2 - 1;
std::nth_element(first, middle, last);
std::nth_element(middle, middle+1, last);
return (*middle + *(middle+1))/2;
}
}
template<class RandomAccessContainer>
inline auto median(RandomAccessContainer & v)
{
return median(v.begin(), v.end());
}
template<class RandomAccessIterator>
auto gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
{
using Real = typename std::iterator_traits<RandomAccessIterator>::value_type;
BOOST_MATH_ASSERT_MSG(first != last && std::next(first) != last, "Computation of the Gini coefficient requires at least two samples.");
std::sort(first, last);
if constexpr (std::is_integral<Real>::value)
{
double i = 1;
double num = 0;
double denom = 0;
for (auto it = first; it != last; ++it)
{
num += *it*i;
denom += *it;
++i;
}
// If the l1 norm is zero, all elements are zero, so every element is the same.
if (denom == 0)
{
return double(0);
}
return ((2*num)/denom - i)/(i-1);
}
else
{
Real i = 1;
Real num = 0;
Real denom = 0;
for (auto it = first; it != last; ++it)
{
num += *it*i;
denom += *it;
++i;
}
// If the l1 norm is zero, all elements are zero, so every element is the same.
if (denom == 0)
{
return Real(0);
}
return ((2*num)/denom - i)/(i-1);
}
}
template<class RandomAccessContainer>
inline auto gini_coefficient(RandomAccessContainer & v)
{
return gini_coefficient(v.begin(), v.end());
}
template<class RandomAccessIterator>
inline auto sample_gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
{
size_t n = std::distance(first, last);
return n*gini_coefficient(first, last)/(n-1);
}
template<class RandomAccessContainer>
inline auto sample_gini_coefficient(RandomAccessContainer & v)
{
return sample_gini_coefficient(v.begin(), v.end());
}
template<class RandomAccessIterator>
auto median_absolute_deviation(RandomAccessIterator first, RandomAccessIterator last, typename std::iterator_traits<RandomAccessIterator>::value_type center=std::numeric_limits<typename std::iterator_traits<RandomAccessIterator>::value_type>::quiet_NaN())
{
using std::abs;
using Real = typename std::iterator_traits<RandomAccessIterator>::value_type;
using std::isnan;
if (isnan(center))
{
center = boost::math::tools::median(first, last);
}
size_t num_elems = std::distance(first, last);
BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero-length vector is undefined.");
auto comparator = [&center](Real a, Real b) { return abs(a-center) < abs(b-center);};
if (num_elems & 1)
{
auto middle = first + (num_elems - 1)/2;
std::nth_element(first, middle, last, comparator);
return abs(*middle);
}
else
{
auto middle = first + num_elems/2 - 1;
std::nth_element(first, middle, last, comparator);
std::nth_element(middle, middle+1, last, comparator);
return (abs(*middle) + abs(*(middle+1)))/abs(static_cast<Real>(2));
}
}
template<class RandomAccessContainer>
inline auto median_absolute_deviation(RandomAccessContainer & v, typename RandomAccessContainer::value_type center=std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN())
{
return median_absolute_deviation(v.begin(), v.end(), center);
}
}
#endif