libcarla/include/system/boost/math/tools/cubic_roots.hpp
2024-10-18 13:19:59 +08:00

177 lines
6.4 KiB
C++

// (C) Copyright Nick Thompson 2021.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_CUBIC_ROOTS_HPP
#define BOOST_MATH_TOOLS_CUBIC_ROOTS_HPP
#include <algorithm>
#include <array>
#include <boost/math/special_functions/sign.hpp>
#include <boost/math/tools/roots.hpp>
namespace boost::math::tools {
// Solves ax^3 + bx^2 + cx + d = 0.
// Only returns the real roots, as types get weird for real coefficients and
// complex roots. Follows Numerical Recipes, Chapter 5, section 6. NB: A better
// algorithm apparently exists: Algorithm 954: An Accurate and Efficient Cubic
// and Quartic Equation Solver for Physical Applications However, I don't have
// access to that paper!
template <typename Real>
std::array<Real, 3> cubic_roots(Real a, Real b, Real c, Real d) {
using std::abs;
using std::acos;
using std::cbrt;
using std::cos;
using std::fma;
using std::sqrt;
std::array<Real, 3> roots = {std::numeric_limits<Real>::quiet_NaN(),
std::numeric_limits<Real>::quiet_NaN(),
std::numeric_limits<Real>::quiet_NaN()};
if (a == 0) {
// bx^2 + cx + d = 0:
if (b == 0) {
// cx + d = 0:
if (c == 0) {
if (d != 0) {
// No solutions:
return roots;
}
roots[0] = 0;
roots[1] = 0;
roots[2] = 0;
return roots;
}
roots[0] = -d / c;
return roots;
}
auto [x0, x1] = quadratic_roots(b, c, d);
roots[0] = x0;
roots[1] = x1;
return roots;
}
if (d == 0) {
auto [x0, x1] = quadratic_roots(a, b, c);
roots[0] = x0;
roots[1] = x1;
roots[2] = 0;
std::sort(roots.begin(), roots.end());
return roots;
}
Real p = b / a;
Real q = c / a;
Real r = d / a;
Real Q = (p * p - 3 * q) / 9;
Real R = (2 * p * p * p - 9 * p * q + 27 * r) / 54;
if (R * R < Q * Q * Q) {
Real rtQ = sqrt(Q);
Real theta = acos(R / (Q * rtQ)) / 3;
Real st = sin(theta);
Real ct = cos(theta);
roots[0] = -2 * rtQ * ct - p / 3;
roots[1] = -rtQ * (-ct + sqrt(Real(3)) * st) - p / 3;
roots[2] = rtQ * (ct + sqrt(Real(3)) * st) - p / 3;
} else {
// In Numerical Recipes, Chapter 5, Section 6, it is claimed that we
// only have one real root if R^2 >= Q^3. But this isn't true; we can
// even see this from equation 5.6.18. The condition for having three
// real roots is that A = B. It *is* the case that if we're in this
// branch, and we have 3 real roots, two are a double root. Take
// (x+1)^2(x-2) = x^3 - 3x -2 as an example. This clearly has a double
// root at x = -1, and it gets sent into this branch.
Real arg = R * R - Q * Q * Q;
Real A = (R >= 0 ? -1 : 1) * cbrt(abs(R) + sqrt(arg));
Real B = 0;
if (A != 0) {
B = Q / A;
}
roots[0] = A + B - p / 3;
// Yes, we're comparing floats for equality:
// Any perturbation pushes the roots into the complex plane; out of the
// bailiwick of this routine.
if (A == B || arg == 0) {
roots[1] = -A - p / 3;
roots[2] = -A - p / 3;
}
}
// Root polishing:
for (auto &r : roots) {
// Horner's method.
// Here I'll take John Gustaffson's opinion that the fma is a *distinct*
// operation from a*x +b: Make sure to compile these fmas into a single
// instruction and not a function call! (I'm looking at you Windows.)
Real f = fma(a, r, b);
f = fma(f, r, c);
f = fma(f, r, d);
Real df = fma(3 * a, r, 2 * b);
df = fma(df, r, c);
if (df != 0) {
Real d2f = fma(6 * a, r, 2 * b);
Real denom = 2 * df * df - f * d2f;
if (denom != 0) {
r -= 2 * f * df / denom;
} else {
r -= f / df;
}
}
}
std::sort(roots.begin(), roots.end());
return roots;
}
// Computes the empirical residual p(r) (first element) and expected residual
// eps*|rp'(r)| (second element) for a root. Recall that for a numerically
// computed root r satisfying r = r_0(1+eps) of a function p, |p(r)| <=
// eps|rp'(r)|.
template <typename Real>
std::array<Real, 2> cubic_root_residual(Real a, Real b, Real c, Real d,
Real root) {
using std::abs;
using std::fma;
std::array<Real, 2> out;
Real residual = fma(a, root, b);
residual = fma(residual, root, c);
residual = fma(residual, root, d);
out[0] = residual;
// The expected residual is:
// eps*[4|ar^3| + 3|br^2| + 2|cr| + |d|]
// This can be demonstrated by assuming the coefficients and the root are
// perturbed according to the rounding model of floating point arithmetic,
// and then working through the inequalities.
root = abs(root);
Real expected_residual = fma(4 * abs(a), root, 3 * abs(b));
expected_residual = fma(expected_residual, root, 2 * abs(c));
expected_residual = fma(expected_residual, root, abs(d));
out[1] = expected_residual * std::numeric_limits<Real>::epsilon();
return out;
}
// Computes the condition number of rootfinding. This is defined in Corless, A
// Graduate Introduction to Numerical Methods, Section 3.2.1.
template <typename Real>
Real cubic_root_condition_number(Real a, Real b, Real c, Real d, Real root) {
using std::abs;
using std::fma;
// There are *absolute* condition numbers that can be defined when r = 0;
// but they basically reduce to the residual computed above.
if (root == static_cast<Real>(0)) {
return std::numeric_limits<Real>::infinity();
}
Real numerator = fma(abs(a), abs(root), abs(b));
numerator = fma(numerator, abs(root), abs(c));
numerator = fma(numerator, abs(root), abs(d));
Real denominator = fma(3 * a, root, 2 * b);
denominator = fma(denominator, root, c);
if (denominator == static_cast<Real>(0)) {
return std::numeric_limits<Real>::infinity();
}
denominator *= root;
return numerator / abs(denominator);
}
} // namespace boost::math::tools
#endif