libcarla/include/system/boost/math/tools/centered_continued_fraction.hpp
2024-10-18 13:19:59 +08:00

167 lines
4.8 KiB
C++

// (C) Copyright Nick Thompson 2020.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_CENTERED_CONTINUED_FRACTION_HPP
#define BOOST_MATH_TOOLS_CENTERED_CONTINUED_FRACTION_HPP
#include <cmath>
#include <cstdint>
#include <vector>
#include <ostream>
#include <iomanip>
#include <limits>
#include <stdexcept>
#include <sstream>
#include <array>
#include <type_traits>
#include <boost/math/tools/is_standalone.hpp>
#ifndef BOOST_MATH_STANDALONE
#include <boost/core/demangle.hpp>
#endif
namespace boost::math::tools {
template<typename Real, typename Z = int64_t>
class centered_continued_fraction {
public:
centered_continued_fraction(Real x) : x_{x} {
static_assert(std::is_integral_v<Z> && std::is_signed_v<Z>,
"Centered continued fractions require signed integer types.");
using std::round;
using std::abs;
using std::sqrt;
using std::isfinite;
if (!isfinite(x))
{
throw std::domain_error("Cannot convert non-finites into continued fractions.");
}
b_.reserve(50);
Real bj = round(x);
b_.push_back(static_cast<Z>(bj));
if (bj == x)
{
b_.shrink_to_fit();
return;
}
x = 1/(x-bj);
Real f = bj;
if (bj == 0)
{
f = 16*(std::numeric_limits<Real>::min)();
}
Real C = f;
Real D = 0;
int i = 0;
while (abs(f - x_) >= (1 + i++)*std::numeric_limits<Real>::epsilon()*abs(x_))
{
bj = round(x);
b_.push_back(static_cast<Z>(bj));
x = 1/(x-bj);
D += bj;
if (D == 0) {
D = 16*(std::numeric_limits<Real>::min)();
}
C = bj + 1/C;
if (C==0)
{
C = 16*(std::numeric_limits<Real>::min)();
}
D = 1/D;
f *= (C*D);
}
// Deal with non-uniqueness of continued fractions: [a0; a1, ..., an, 1] = a0; a1, ..., an + 1].
if (b_.size() > 2 && b_.back() == 1)
{
b_[b_.size() - 2] += 1;
b_.resize(b_.size() - 1);
}
b_.shrink_to_fit();
for (size_t i = 1; i < b_.size(); ++i)
{
if (b_[i] == 0) {
std::ostringstream oss;
oss << "Found a zero partial denominator: b[" << i << "] = " << b_[i] << "."
#ifndef BOOST_MATH_STANDALONE
<< " This means the integer type '" << boost::core::demangle(typeid(Z).name())
#else
<< " This means the integer type '" << typeid(Z).name()
#endif
<< "' has overflowed and you need to use a wider type,"
<< " or there is a bug.";
throw std::overflow_error(oss.str());
}
}
}
Real khinchin_geometric_mean() const {
if (b_.size() == 1)
{
return std::numeric_limits<Real>::quiet_NaN();
}
using std::log;
using std::exp;
using std::abs;
const std::array<Real, 7> logs{std::numeric_limits<Real>::quiet_NaN(), Real(0), log(static_cast<Real>(2)), log(static_cast<Real>(3)), log(static_cast<Real>(4)), log(static_cast<Real>(5)), log(static_cast<Real>(6))};
Real log_prod = 0;
for (size_t i = 1; i < b_.size(); ++i)
{
if (abs(b_[i]) < static_cast<Z>(logs.size()))
{
log_prod += logs[abs(b_[i])];
}
else
{
log_prod += log(static_cast<Real>(abs(b_[i])));
}
}
log_prod /= (b_.size()-1);
return exp(log_prod);
}
const std::vector<Z>& partial_denominators() const {
return b_;
}
template<typename T, typename Z2>
friend std::ostream& operator<<(std::ostream& out, centered_continued_fraction<T, Z2>& ccf);
private:
const Real x_;
std::vector<Z> b_;
};
template<typename Real, typename Z2>
std::ostream& operator<<(std::ostream& out, centered_continued_fraction<Real, Z2>& scf) {
constexpr const int p = std::numeric_limits<Real>::max_digits10;
if constexpr (p == 2147483647)
{
out << std::setprecision(scf.x_.backend().precision());
}
else
{
out << std::setprecision(p);
}
out << "[" << scf.b_.front();
if (scf.b_.size() > 1)
{
out << "; ";
for (size_t i = 1; i < scf.b_.size() -1; ++i)
{
out << scf.b_[i] << ", ";
}
out << scf.b_.back();
}
out << "]";
return out;
}
}
#endif