libcarla/include/system/boost/json/value.hpp
2024-10-18 13:19:59 +08:00

4054 lines
94 KiB
C++

//
// Copyright (c) 2019 Vinnie Falco (vinnie.falco@gmail.com)
// Copyright (c) 2020 Krystian Stasiowski (sdkrystian@gmail.com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// Official repository: https://github.com/boostorg/json
//
#ifndef BOOST_JSON_VALUE_HPP
#define BOOST_JSON_VALUE_HPP
#include <boost/json/detail/config.hpp>
#include <boost/json/array.hpp>
#include <boost/json/kind.hpp>
#include <boost/json/object.hpp>
#include <boost/json/pilfer.hpp>
#include <boost/json/storage_ptr.hpp>
#include <boost/json/string.hpp>
#include <boost/json/string_view.hpp>
#include <boost/json/value_ref.hpp>
#include <boost/json/detail/except.hpp>
#include <boost/json/detail/value.hpp>
#include <cstdlib>
#include <cstring>
#include <initializer_list>
#include <iosfwd>
#include <limits>
#include <new>
#include <type_traits>
#include <utility>
BOOST_JSON_NS_BEGIN
//----------------------------------------------------------
/** The type used to represent any JSON value
This is a
<a href="https://en.cppreference.com/w/cpp/concepts/regular"><em>Regular</em></a>.
<em>Regular</em>
type which works like
a variant of the basic JSON data types: array,
object, string, number, boolean, and null.
@par Thread Safety
Distinct instances may be accessed concurrently.
Non-const member functions of a shared instance
may not be called concurrently with any other
member functions of that instance.
*/
class value
{
#ifndef BOOST_JSON_DOCS
using scalar = detail::scalar;
union
{
storage_ptr sp_; // must come first
array arr_;
object obj_;
string str_;
scalar sca_;
};
#endif
struct init_iter;
#ifndef BOOST_JSON_DOCS
// VFALCO doc toolchain incorrectly treats this as public
friend struct detail::access;
#endif
explicit
value(
detail::unchecked_array&& ua)
: arr_(std::move(ua))
{
}
explicit
value(
detail::unchecked_object&& uo)
: obj_(std::move(uo))
{
}
value(
detail::key_t const&,
string_view s,
storage_ptr sp)
: str_(detail::key_t{}, s, std::move(sp))
{
}
value(
detail::key_t const&,
string_view s1,
string_view s2,
storage_ptr sp)
: str_(detail::key_t{}, s1, s2, std::move(sp))
{
}
inline bool is_scalar() const noexcept
{
return sca_.k < json::kind::string;
}
public:
/** The type of _Allocator_ returned by @ref get_allocator
This type is a @ref polymorphic_allocator.
*/
#ifdef BOOST_JSON_DOCS
// VFALCO doc toolchain renders this incorrectly
using allocator_type = __see_below__;
#else
using allocator_type = polymorphic_allocator<value>;
#endif
/** Destructor.
The value and all of its contents are destroyed.
Any dynamically allocated memory that was allocated
internally is freed.
@par Complexity
Constant, or linear in size for array or object.
@par Exception Safety
No-throw guarantee.
*/
BOOST_JSON_DECL
~value() noexcept;
/** Default constructor.
The constructed value is null,
using the default memory resource.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
value() noexcept
: sca_()
{
}
/** Constructor.
The constructed value is null,
using the specified @ref memory_resource.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
explicit
value(storage_ptr sp) noexcept
: sca_(std::move(sp))
{
}
/** Pilfer constructor.
The value is constructed by acquiring ownership
of the contents of `other` using pilfer semantics.
This is more efficient than move construction, when
it is known that the moved-from object will be
immediately destroyed afterwards.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param other The value to pilfer. After pilfer
construction, `other` is not in a usable state
and may only be destroyed.
@see @ref pilfer,
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0308r0.html">
Valueless Variants Considered Harmful</a>
*/
value(pilfered<value> other) noexcept
{
relocate(this, other.get());
::new(&other.get().sca_) scalar();
}
/** Copy constructor.
The value is constructed with a copy of the
contents of `other`, using the same
memory resource as `other`.
@par Complexity
Linear in the size of `other`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The value to copy.
*/
value(value const& other)
: value(other, other.storage())
{
}
/** Copy constructor
The value is constructed with a copy of the
contents of `other`, using the
specified memory resource.
@par Complexity
Linear in the size of `other`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The value to copy.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
BOOST_JSON_DECL
value(
value const& other,
storage_ptr sp);
/** Move constructor
The value is constructed by acquiring ownership of
the contents of `other` and shared ownership of
`other`'s memory resource.
@note
After construction, the moved-from value becomes a
null value with its current storage pointer.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param other The value to move.
*/
BOOST_JSON_DECL
value(value&& other) noexcept;
/** Move constructor
The value is constructed with the contents of
`other` by move semantics, using the specified
memory resource:
@li If `*other.storage() == *sp`, ownership of
the underlying memory is transferred in constant
time, with no possibility of exceptions.
After construction, the moved-from value becomes
a null value with its current storage pointer.
@li If `*other.storage() != *sp`, an
element-wise copy is performed if
`other.is_structured() == true`, which may throw.
In this case, the moved-from value is not
changed.
@par Complexity
Constant or linear in the size of `other`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The value to move.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
BOOST_JSON_DECL
value(
value&& other,
storage_ptr sp);
//------------------------------------------------------
//
// Conversion
//
//------------------------------------------------------
/** Construct a null.
A null value is a monostate.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
std::nullptr_t,
storage_ptr sp = {}) noexcept
: sca_(std::move(sp))
{
}
/** Construct a bool.
This constructs a `bool` value using
the specified memory resource.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param b The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
#ifdef BOOST_JSON_DOCS
value(
bool b,
storage_ptr sp = {}) noexcept;
#else
template<class Bool
,class = typename std::enable_if<
std::is_same<Bool, bool>::value>::type
>
value(
Bool b,
storage_ptr sp = {}) noexcept
: sca_(b, std::move(sp))
{
}
#endif
/** Construct a `std::int64_t`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param i The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
signed char i,
storage_ptr sp = {}) noexcept
: sca_(static_cast<std::int64_t>(
i), std::move(sp))
{
}
/** Construct a `std::int64_t`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param i The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
short i,
storage_ptr sp = {}) noexcept
: sca_(static_cast<std::int64_t>(
i), std::move(sp))
{
}
/** Construct a `std::int64_t`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param i The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
int i,
storage_ptr sp = {}) noexcept
: sca_(static_cast<std::int64_t>(i),
std::move(sp))
{
}
/** Construct a `std::int64_t`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param i The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
long i,
storage_ptr sp = {}) noexcept
: sca_(static_cast<std::int64_t>(i),
std::move(sp))
{
}
/** Construct a `std::int64_t`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param i The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
long long i,
storage_ptr sp = {}) noexcept
: sca_(static_cast<std::int64_t>(i),
std::move(sp))
{
}
/** Construct a `std::uint64_t`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param u The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
unsigned char u,
storage_ptr sp = {}) noexcept
: sca_(static_cast<std::uint64_t>(
u), std::move(sp))
{
}
/** Construct a `std::uint64_t`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param u The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
unsigned short u,
storage_ptr sp = {}) noexcept
: sca_(static_cast<std::uint64_t>(u),
std::move(sp))
{
}
/** Construct a `std::uint64_t`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param u The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
unsigned int u,
storage_ptr sp = {}) noexcept
: sca_(static_cast<std::uint64_t>(u),
std::move(sp))
{
}
/** Construct a `std::uint64_t`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param u The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
unsigned long u,
storage_ptr sp = {}) noexcept
: sca_(static_cast<std::uint64_t>(u),
std::move(sp))
{
}
/** Construct a `std::uint64_t`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param u The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
unsigned long long u,
storage_ptr sp = {}) noexcept
: sca_(static_cast<std::uint64_t>(u),
std::move(sp))
{
}
/** Construct a `double`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param d The initial value.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
double d,
storage_ptr sp = {}) noexcept
: sca_(d, std::move(sp))
{
}
/** Construct a @ref string.
The string is constructed with a copy of the
string view `s`, using the specified memory resource.
@par Complexity
Linear in `s.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param s The string view to construct with.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
string_view s,
storage_ptr sp = {})
: str_(s, std::move(sp))
{
}
/** Construct a @ref string.
The string is constructed with a copy of the
null-terminated string `s`, using the specified
memory resource.
@par Complexity
Linear in `std::strlen(s)`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param s The null-terminated string to construct
with.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
char const* s,
storage_ptr sp = {})
: str_(s, std::move(sp))
{
}
/** Construct a @ref string.
The value is constructed from `other`, using the
same memory resource. To transfer ownership, use `std::move`:
@par Example
@code
string str = "The Boost C++ Library Collection";
// transfer ownership
value jv( std::move(str) );
assert( str.empty() );
assert( *str.storage() == *jv.storage() );
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param other The string to construct with.
*/
value(
string other) noexcept
: str_(std::move(other))
{
}
/** Construct a @ref string.
The value is copy constructed from `other`,
using the specified memory resource.
@par Complexity
Linear in `other.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The string to construct with.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
string const& other,
storage_ptr sp)
: str_(
other,
std::move(sp))
{
}
/** Construct a @ref string.
The value is move constructed from `other`,
using the specified memory resource.
@par Complexity
Constant or linear in `other.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The string to construct with.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
string&& other,
storage_ptr sp)
: str_(
std::move(other),
std::move(sp))
{
}
/** Construct a @ref string.
This is the fastest way to construct
an empty string, using the specified
memory resource. The variable @ref string_kind
may be passed as the first parameter
to select this overload:
@par Example
@code
// Construct an empty string
value jv( string_kind );
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
@see @ref string_kind
*/
value(
string_kind_t,
storage_ptr sp = {}) noexcept
: str_(std::move(sp))
{
}
/** Construct an @ref array.
The value is constructed from `other`, using the
same memory resource. To transfer ownership, use `std::move`:
@par Example
@code
array arr( {1, 2, 3, 4, 5} );
// transfer ownership
value jv( std::move(arr) );
assert( arr.empty() );
assert( *arr.storage() == *jv.storage() );
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param other The array to construct with.
*/
value(array other) noexcept
: arr_(std::move(other))
{
}
/** Construct an @ref array.
The value is copy constructed from `other`,
using the specified memory resource.
@par Complexity
Linear in `other.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The array to construct with.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
array const& other,
storage_ptr sp)
: arr_(
other,
std::move(sp))
{
}
/** Construct an @ref array.
The value is move-constructed from `other`,
using the specified memory resource.
@par Complexity
Constant or linear in `other.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The array to construct with.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
array&& other,
storage_ptr sp)
: arr_(
std::move(other),
std::move(sp))
{
}
/** Construct an @ref array.
This is the fastest way to construct
an empty array, using the specified
memory resource. The variable @ref array_kind
may be passed as the first parameter
to select this overload:
@par Example
@code
// Construct an empty array
value jv( array_kind );
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
@see @ref array_kind
*/
value(
array_kind_t,
storage_ptr sp = {}) noexcept
: arr_(std::move(sp))
{
}
/** Construct an @ref object.
The value is constructed from `other`, using the
same memory resource. To transfer ownership, use `std::move`:
@par Example
@code
object obj( {{"a",1}, {"b",2}, {"c"},3}} );
// transfer ownership
value jv( std::move(obj) );
assert( obj.empty() );
assert( *obj.storage() == *jv.storage() );
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param other The object to construct with.
*/
value(object other) noexcept
: obj_(std::move(other))
{
}
/** Construct an @ref object.
The value is copy constructed from `other`,
using the specified memory resource.
@par Complexity
Linear in `other.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The object to construct with.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
object const& other,
storage_ptr sp)
: obj_(
other,
std::move(sp))
{
}
/** Construct an @ref object.
The value is move constructed from `other`,
using the specified memory resource.
@par Complexity
Constant or linear in `other.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The object to construct with.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
value(
object&& other,
storage_ptr sp)
: obj_(
std::move(other),
std::move(sp))
{
}
/** Construct an @ref object.
This is the fastest way to construct
an empty object, using the specified
memory resource. The variable @ref object_kind
may be passed as the first parameter
to select this overload:
@par Example
@code
// Construct an empty object
value jv( object_kind );
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
@see @ref object_kind
*/
value(
object_kind_t,
storage_ptr sp = {}) noexcept
: obj_(std::move(sp))
{
}
/** Construct from an initializer-list
If the initializer list consists of key/value
pairs, an @ref object is created. Otherwise
an @ref array is created. The contents of the
initializer list are copied to the newly constructed
value using the specified memory resource.
@par Complexity
Linear in `init.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param init The initializer list to construct from.
@param sp A pointer to the @ref memory_resource
to use. The container will acquire shared
ownership of the memory resource.
*/
BOOST_JSON_DECL
value(
std::initializer_list<value_ref> init,
storage_ptr sp = {});
//------------------------------------------------------
//
// Assignment
//
//------------------------------------------------------
/** Copy assignment.
The contents of the value are replaced with an
element-wise copy of the contents of `other`.
@par Complexity
Linear in the size of `*this` plus `other`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The value to copy.
*/
BOOST_JSON_DECL
value&
operator=(value const& other);
/** Move assignment.
The contents of the value are replaced with the
contents of `other` using move semantics:
@li If `*other.storage() == *sp`, ownership of
the underlying memory is transferred in constant
time, with no possibility of exceptions.
After assignment, the moved-from value becomes
a null with its current storage pointer.
@li If `*other.storage() != *sp`, an
element-wise copy is performed if
`other.is_structured() == true`, which may throw.
In this case, the moved-from value is not
changed.
@par Complexity
Constant, or linear in
`this->size()` plus `other.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The value to assign from.
*/
BOOST_JSON_DECL
value&
operator=(value&& other);
/** Assignment.
Replace `*this` with the value formed by
constructing from `init` and `this->storage()`.
If the initializer list consists of key/value
pairs, the resulting @ref object is assigned.
Otherwise an @ref array is assigned. The contents
of the initializer list are moved to `*this`
using the existing memory resource.
@par Complexity
Linear in `init.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param init The initializer list to assign from.
*/
BOOST_JSON_DECL
value&
operator=(
std::initializer_list<value_ref> init);
/** Assignment.
Replace `*this` with null.
@par Exception Safety
No-throw guarantee.
@par Complexity
Linear in the size of `*this`.
*/
value&
operator=(std::nullptr_t) noexcept
{
if(is_scalar())
{
sca_.k = json::kind::null;
}
else
{
::new(&sca_) scalar(
destroy());
}
return *this;
}
/** Assignment.
Replace `*this` with `b`.
@par Exception Safety
No-throw guarantee.
@par Complexity
Linear in the size of `*this`.
@param b The new value.
*/
#ifdef BOOST_JSON_DOCS
value& operator=(bool b) noexcept;
#else
template<class Bool
,class = typename std::enable_if<
std::is_same<Bool, bool>::value>::type
>
value& operator=(Bool b) noexcept
{
if(is_scalar())
{
sca_.b = b;
sca_.k = json::kind::bool_;
}
else
{
::new(&sca_) scalar(
b, destroy());
}
return *this;
}
#endif
/** Assignment.
Replace `*this` with `i`.
@par Exception Safety
No-throw guarantee.
@par Complexity
Linear in the size of `*this`.
@param i The new value.
*/
/** @{ */
value& operator=(signed char i) noexcept
{
return operator=(
static_cast<long long>(i));
}
value& operator=(short i) noexcept
{
return operator=(
static_cast<long long>(i));
}
value& operator=(int i) noexcept
{
return operator=(
static_cast<long long>(i));
}
value& operator=(long i) noexcept
{
return operator=(
static_cast<long long>(i));
}
value& operator=(long long i) noexcept
{
if(is_scalar())
{
sca_.i = i;
sca_.k = json::kind::int64;
}
else
{
::new(&sca_) scalar(static_cast<
std::int64_t>(i), destroy());
}
return *this;
}
/** @} */
/** Assignment.
Replace `*this` with `i`.
@par Exception Safety
No-throw guarantee.
@par Complexity
Linear in the size of `*this`.
@param u The new value.
*/
/** @{ */
value& operator=(unsigned char u) noexcept
{
return operator=(static_cast<
unsigned long long>(u));
}
value& operator=(unsigned short u) noexcept
{
return operator=(static_cast<
unsigned long long>(u));
}
value& operator=(unsigned int u) noexcept
{
return operator=(static_cast<
unsigned long long>(u));
}
value& operator=(unsigned long u) noexcept
{
return operator=(static_cast<
unsigned long long>(u));
}
value& operator=(unsigned long long u) noexcept
{
if(is_scalar())
{
sca_.u = u;
sca_.k = json::kind::uint64;
}
else
{
::new(&sca_) scalar(static_cast<
std::uint64_t>(u), destroy());
}
return *this;
}
/** @} */
/** Assignment.
Replace `*this` with `d`.
@par Exception Safety
No-throw guarantee.
@par Complexity
Linear in the size of `*this`.
@param d The new value.
*/
value& operator=(double d) noexcept
{
if(is_scalar())
{
sca_.d = d;
sca_.k = json::kind::double_;
}
else
{
::new(&sca_) scalar(
d, destroy());
}
return *this;
}
/** Assignment.
Replace `*this` with a copy of the string `s`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@par Complexity
Linear in the sum of sizes of `*this` and `s`
@param s The new string.
*/
/** @{ */
BOOST_JSON_DECL value& operator=(string_view s);
BOOST_JSON_DECL value& operator=(char const* s);
BOOST_JSON_DECL value& operator=(string const& s);
/** @} */
/** Assignment.
The contents of the value are replaced with the
contents of `s` using move semantics:
@li If `*other.storage() == *this->storage()`,
ownership of the underlying memory is transferred
in constant time, with no possibility of exceptions.
After assignment, the moved-from string becomes
empty with its current storage pointer.
@li If `*other.storage() != *this->storage()`, an
element-wise copy is performed, which may throw.
In this case, the moved-from string is not
changed.
@par Complexity
Constant, or linear in the size of `*this` plus `s.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param s The string to move-assign from.
*/
BOOST_JSON_DECL value& operator=(string&& s);
/** Assignment.
Replace `*this` with a copy of the array `arr`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@par Complexity
Linear in the sum of sizes of `*this` and `arr`
@param arr The new array.
*/
BOOST_JSON_DECL value& operator=(array const& arr);
/** Assignment.
The contents of the value are replaced with the
contents of `arr` using move semantics:
@li If `*arr.storage() == *this->storage()`,
ownership of the underlying memory is transferred
in constant time, with no possibility of exceptions.
After assignment, the moved-from array becomes
empty with its current storage pointer.
@li If `*arr.storage() != *this->storage()`, an
element-wise copy is performed, which may throw.
In this case, the moved-from array is not
changed.
@par Complexity
Constant, or linear in the size of `*this` plus `arr.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param arr The array to move-assign from.
*/
BOOST_JSON_DECL value& operator=(array&& arr);
/** Assignment.
Replace `*this` with a copy of the obect `obj`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@par Complexity
Linear in the sum of sizes of `*this` and `obj`
@param obj The new object.
*/
BOOST_JSON_DECL value& operator=(object const& obj);
/** Assignment.
The contents of the value are replaced with the
contents of `obj` using move semantics:
@li If `*obj.storage() == *this->storage()`,
ownership of the underlying memory is transferred
in constant time, with no possibility of exceptions.
After assignment, the moved-from object becomes
empty with its current storage pointer.
@li If `*obj.storage() != *this->storage()`, an
element-wise copy is performed, which may throw.
In this case, the moved-from object is not
changed.
@par Complexity
Constant, or linear in the size of `*this` plus `obj.size()`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param obj The object to move-assign from.
*/
BOOST_JSON_DECL value& operator=(object&& obj);
//------------------------------------------------------
//
// Modifiers
//
//------------------------------------------------------
/** Change the kind to null, discarding the previous contents.
The value is replaced with a null,
destroying the previous contents.
@par Complexity
Linear in the size of `*this`.
@par Exception Safety
No-throw guarantee.
*/
void
emplace_null() noexcept
{
*this = nullptr;
}
/** Return a reference to a `bool`, changing the kind and replacing the contents.
The value is replaced with a `bool`
initialized to `false`, destroying the
previous contents.
@par Complexity
Linear in the size of `*this`.
@par Exception Safety
No-throw guarantee.
*/
bool&
emplace_bool() noexcept
{
*this = false;
return sca_.b;
}
/** Return a reference to a `std::int64_t`, changing the kind and replacing the contents.
The value is replaced with a `std::int64_t`
initialized to zero, destroying the
previous contents.
@par Complexity
Linear in the size of `*this`.
@par Exception Safety
No-throw guarantee.
*/
std::int64_t&
emplace_int64() noexcept
{
*this = std::int64_t{};
return sca_.i;
}
/** Return a reference to a `std::uint64_t`, changing the kind and replacing the contents.
The value is replaced with a `std::uint64_t`
initialized to zero, destroying the
previous contents.
@par Complexity
Linear in the size of `*this`.
@par Exception Safety
No-throw guarantee.
*/
std::uint64_t&
emplace_uint64() noexcept
{
*this = std::uint64_t{};
return sca_.u;
}
/** Return a reference to a `double`, changing the kind and replacing the contents.
The value is replaced with a `double`
initialized to zero, destroying the
previous contents.
@par Complexity
Linear in the size of `*this`.
@par Exception Safety
No-throw guarantee.
*/
double&
emplace_double() noexcept
{
*this = double{};
return sca_.d;
}
/** Return a reference to a @ref string, changing the kind and replacing the contents.
The value is replaced with an empty @ref string
using the current memory resource, destroying the
previous contents.
@par Complexity
Linear in the size of `*this`.
@par Exception Safety
No-throw guarantee.
*/
BOOST_JSON_DECL
string&
emplace_string() noexcept;
/** Return a reference to an @ref array, changing the kind and replacing the contents.
The value is replaced with an empty @ref array
using the current memory resource, destroying the
previous contents.
@par Complexity
Linear in the size of `*this`.
@par Exception Safety
No-throw guarantee.
*/
BOOST_JSON_DECL
array&
emplace_array() noexcept;
/** Return a reference to an @ref object, changing the kind and replacing the contents.
The contents are replaced with an empty @ref object
using the current @ref memory_resource. All
previously obtained iterators and references
obtained beforehand are invalidated.
@par Complexity
Linear in the size of `*this`.
@par Exception Safety
No-throw guarantee.
*/
BOOST_JSON_DECL
object&
emplace_object() noexcept;
/** Swap the given values.
Exchanges the contents of this value with another
value. Ownership of the respective @ref memory_resource
objects is not transferred:
@li If `*other.storage() == *this->storage()`,
ownership of the underlying memory is swapped in
constant time, with no possibility of exceptions.
All iterators and references remain valid.
@li If `*other.storage() != *this->storage()`,
the contents are logically swapped by making copies,
which can throw. In this case all iterators and
references are invalidated.
@par Complexity
Constant or linear in the sum of the sizes of
the values.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The value to swap with.
If `this == &other`, this function call has no effect.
*/
BOOST_JSON_DECL
void
swap(value& other);
/** Swap the given values.
Exchanges the contents of value `lhs` with
another value `rhs`. Ownership of the respective
@ref memory_resource objects is not transferred.
@li If `*lhs.storage() == *rhs.storage()`,
ownership of the underlying memory is swapped in
constant time, with no possibility of exceptions.
All iterators and references remain valid.
@li If `*lhs.storage() != *rhs.storage`,
the contents are logically swapped by a copy,
which can throw. In this case all iterators and
references are invalidated.
@par Effects
@code
lhs.swap( rhs );
@endcode
@par Complexity
Constant or linear in the sum of the sizes of
the values.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param lhs The value to exchange.
@param rhs The value to exchange.
If `&lhs == &rhs`, this function call has no effect.
@see @ref value::swap
*/
friend
void
swap(value& lhs, value& rhs)
{
lhs.swap(rhs);
}
//------------------------------------------------------
//
// Observers
//
//------------------------------------------------------
/** Returns the kind of this JSON value.
This function returns the discriminating
enumeration constant of type @ref json::kind
corresponding to the underlying representation
stored in the container.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
json::kind
kind() const noexcept
{
return static_cast<json::kind>(
static_cast<unsigned char>(
sca_.k) & 0x3f);
}
/** Return `true` if this is an array
This function is used to determine if the underlying
representation is a certain kind.
@par Effects
@code
return this->kind() == kind::array;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_array() const noexcept
{
return kind() == json::kind::array;
}
/** Return `true` if this is an object
This function is used to determine if the underlying
representation is a certain kind.
@par Effects
@code
return this->kind() == kind::object;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_object() const noexcept
{
return kind() == json::kind::object;
}
/** Return `true` if this is a string
This function is used to determine if the underlying
representation is a certain kind.
@par Effects
@code
return this->kind() == kind::string;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_string() const noexcept
{
return kind() == json::kind::string;
}
/** Return `true` if this is a signed integer
This function is used to determine if the underlying
representation is a certain kind.
@par Effects
@code
return this->kind() == kind::int64;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_int64() const noexcept
{
return kind() == json::kind::int64;
}
/** Return `true` if this is a unsigned integer
This function is used to determine if the underlying
representation is a certain kind.
@par Effects
@code
return this->kind() == kind::uint64;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_uint64() const noexcept
{
return kind() == json::kind::uint64;
}
/** Return `true` if this is a double
This function is used to determine if the underlying
representation is a certain kind.
@par Effects
@code
return this->kind() == kind::double_;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_double() const noexcept
{
return kind() == json::kind::double_;
}
/** Return `true` if this is a bool
This function is used to determine if the underlying
representation is a certain kind.
@par Effects
@code
return this->kind() == kind::bool_;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_bool() const noexcept
{
return kind() == json::kind::bool_;
}
/** Returns true if this is a null.
This function is used to determine if the underlying
representation is a certain kind.
@par Effects
@code
return this->kind() == kind::null;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_null() const noexcept
{
return kind() == json::kind::null;
}
/** Returns true if this is an array or object.
This function returns `true` if
@ref kind() is either `kind::object` or
`kind::array`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_structured() const noexcept
{
// VFALCO Could use bit 0x20 for this
return
kind() == json::kind::object ||
kind() == json::kind::array;
}
/** Returns true if this is not an array or object.
This function returns `true` if
@ref kind() is neither `kind::object` nor
`kind::array`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_primitive() const noexcept
{
// VFALCO Could use bit 0x20 for this
return
sca_.k != json::kind::object &&
sca_.k != json::kind::array;
}
/** Returns true if this is a number.
This function returns `true` when
@ref kind() is one of the following values:
`kind::int64`, `kind::uint64`, or
`kind::double_`.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
is_number() const noexcept
{
// VFALCO Could use bit 0x40 for this
return
kind() == json::kind::int64 ||
kind() == json::kind::uint64 ||
kind() == json::kind::double_;
}
//------------------------------------------------------
/** Return an @ref array pointer if this is an array, else return `nullptr`
If `this->kind() == kind::array`, returns a pointer
to the underlying array. Otherwise, returns `nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_array() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
array const*
if_array() const noexcept
{
if(kind() == json::kind::array)
return &arr_;
return nullptr;
}
/** Return an @ref array pointer if this is an array, else return `nullptr`
If `this->kind() == kind::array`, returns a pointer
to the underlying array. Otherwise, returns `nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_array() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
array*
if_array() noexcept
{
if(kind() == json::kind::array)
return &arr_;
return nullptr;
}
/** Return an @ref object pointer if this is an object, else return `nullptr`
If `this->kind() == kind::object`, returns a pointer
to the underlying object. Otherwise, returns `nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_object() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
object const*
if_object() const noexcept
{
if(kind() == json::kind::object)
return &obj_;
return nullptr;
}
/** Return an @ref object pointer if this is an object, else return `nullptr`
If `this->kind() == kind::object`, returns a pointer
to the underlying object. Otherwise, returns `nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_object() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
object*
if_object() noexcept
{
if(kind() == json::kind::object)
return &obj_;
return nullptr;
}
/** Return a @ref string pointer if this is a string, else return `nullptr`
If `this->kind() == kind::string`, returns a pointer
to the underlying object. Otherwise, returns `nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_string() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
string const*
if_string() const noexcept
{
if(kind() == json::kind::string)
return &str_;
return nullptr;
}
/** Return a @ref string pointer if this is a string, else return `nullptr`
If `this->kind() == kind::string`, returns a pointer
to the underlying object. Otherwise, returns `nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_string() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
string*
if_string() noexcept
{
if(kind() == json::kind::string)
return &str_;
return nullptr;
}
/** Return an `int64_t` pointer if this is a signed integer, else return `nullptr`
If `this->kind() == kind::int64`, returns a pointer
to the underlying integer. Otherwise, returns `nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_int64() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
std::int64_t const*
if_int64() const noexcept
{
if(kind() == json::kind::int64)
return &sca_.i;
return nullptr;
}
/** Return an `int64_t` pointer if this is a signed integer, else return `nullptr`
If `this->kind() == kind::int64`, returns a pointer
to the underlying integer. Otherwise, returns `nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_int64() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
std::int64_t*
if_int64() noexcept
{
if(kind() == json::kind::int64)
return &sca_.i;
return nullptr;
}
/** Return a `uint64_t` pointer if this is an unsigned integer, else return `nullptr`
If `this->kind() == kind::uint64`, returns a pointer
to the underlying unsigned integer. Otherwise, returns
`nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_uint64() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
std::uint64_t const*
if_uint64() const noexcept
{
if(kind() == json::kind::uint64)
return &sca_.u;
return nullptr;
}
/** Return a `uint64_t` pointer if this is an unsigned integer, else return `nullptr`
If `this->kind() == kind::uint64`, returns a pointer
to the underlying unsigned integer. Otherwise, returns
`nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_uint64() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
std::uint64_t*
if_uint64() noexcept
{
if(kind() == json::kind::uint64)
return &sca_.u;
return nullptr;
}
/** Return a `double` pointer if this is a double, else return `nullptr`
If `this->kind() == kind::double_`, returns a pointer
to the underlying double. Otherwise, returns
`nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_double() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
double const*
if_double() const noexcept
{
if(kind() == json::kind::double_)
return &sca_.d;
return nullptr;
}
/** Return a `double` pointer if this is a double, else return `nullptr`
If `this->kind() == kind::double_`, returns a pointer
to the underlying double. Otherwise, returns
`nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_double() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
double*
if_double() noexcept
{
if(kind() == json::kind::double_)
return &sca_.d;
return nullptr;
}
/** Return a `bool` pointer if this is a boolean, else return `nullptr`
If `this->kind() == kind::bool_`, returns a pointer
to the underlying boolean. Otherwise, returns
`nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_bool() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool const*
if_bool() const noexcept
{
if(kind() == json::kind::bool_)
return &sca_.b;
return nullptr;
}
/** Return a `bool` pointer if this is a boolean, else return `nullptr`
If `this->kind() == kind::bool_`, returns a pointer
to the underlying boolean. Otherwise, returns
`nullptr`.
@par Example
The return value is used in both a boolean context and
to assign a variable:
@code
if( auto p = jv.if_bool() )
return *p;
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool*
if_bool() noexcept
{
if(kind() == json::kind::bool_)
return &sca_.b;
return nullptr;
}
//------------------------------------------------------
/** Return the stored number cast to an arithmetic type.
This function attempts to return the stored value
converted to the arithmetic type `T` which may not
be `bool`:
@li If `T` is an integral type and the stored
value is a number which can be losslessly converted,
the conversion is performed without error and the
converted number is returned.
@li If `T` is an integral type and the stored value
is a number which cannot be losslessly converted,
then the operation fails with an error.
@li If `T` is a floating point type and the stored
value is a number, the conversion is performed
without error. The converted number is returned,
with a possible loss of precision.
@li Otherwise, if the stored value is not a number;
that is, if `this->is_number()` returns `false`, then
the operation fails with an error.
@par Constraints
@code
std::is_arithmetic< T >::value && ! std::is_same< T, bool >::value
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@return The converted number.
@param ec Set to the error, if any occurred.
*/
/** @{ */
template<class T>
#ifdef BOOST_JSON_DOCS
T
#else
typename std::enable_if<
std::is_arithmetic<T>::value &&
! std::is_same<T, bool>::value,
T>::type
#endif
to_number(error_code& ec) const noexcept
{
error e;
auto result = to_number<T>(e);
BOOST_JSON_FAIL(ec, e);
return result;
}
template<class T>
#ifdef BOOST_JSON_DOCS
T
#else
typename std::enable_if<
std::is_arithmetic<T>::value &&
! std::is_same<T, bool>::value,
T>::type
#endif
to_number(std::error_code& ec) const noexcept
{
error_code jec;
auto result = to_number<T>(jec);
ec = jec;
return result;
}
/** @} */
/** Return the stored number cast to an arithmetic type.
This function attempts to return the stored value
converted to the arithmetic type `T` which may not
be `bool`:
@li If `T` is an integral type and the stored
value is a number which can be losslessly converted,
the conversion is performed without error and the
converted number is returned.
@li If `T` is an integral type and the stored value
is a number which cannot be losslessly converted,
then the operation fails with an error.
@li If `T` is a floating point type and the stored
value is a number, the conversion is performed
without error. The converted number is returned,
with a possible loss of precision.
@li Otherwise, if the stored value is not a number;
that is, if `this->is_number()` returns `false`, then
the operation fails with an error.
@par Constraints
@code
std::is_arithmetic< T >::value && ! std::is_same< T, bool >::value
@endcode
@par Complexity
Constant.
@return The converted number.
@throw system_error on error.
*/
template<class T>
#ifdef BOOST_JSON_DOCS
T
#else
typename std::enable_if<
std::is_arithmetic<T>::value &&
! std::is_same<T, bool>::value,
T>::type
#endif
to_number() const
{
error_code ec;
auto result = to_number<T>(ec);
if(ec)
detail::throw_system_error(ec, BOOST_JSON_SOURCE_POS);
return result;
}
//------------------------------------------------------
//
// Accessors
//
//------------------------------------------------------
/** Return the memory resource associated with the value.
This returns a pointer to the memory resource
that was used to construct the value.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
storage_ptr const&
storage() const noexcept
{
return sp_;
}
/** Return the associated @ref memory_resource
This function returns an instance of
@ref polymorphic_allocator constructed from the
associated @ref memory_resource.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
allocator_type
get_allocator() const noexcept
{
return sp_.get();
}
//------------------------------------------------------
/** Return a reference to the underlying `object`, or throw an exception.
If @ref is_object() is `true`, returns
a reference to the underlying @ref object,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_object()`
*/
object&
as_object()
{
if(! is_object())
detail::throw_invalid_argument(
"not an object",
BOOST_JSON_SOURCE_POS);
return obj_;
}
/** Return a reference to the underlying `object`, or throw an exception.
If @ref is_object() is `true`, returns
a reference to the underlying @ref object,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_object()`
*/
object const&
as_object() const
{
if(! is_object())
detail::throw_invalid_argument(
"not an object",
BOOST_JSON_SOURCE_POS);
return obj_;
}
/** Return a reference to the underlying @ref array, or throw an exception.
If @ref is_array() is `true`, returns
a reference to the underlying @ref array,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_array()`
*/
array&
as_array()
{
if(! is_array())
detail::throw_invalid_argument(
"array required",
BOOST_JSON_SOURCE_POS);
return arr_;
}
/** Return a reference to the underlying `array`, or throw an exception.
If @ref is_array() is `true`, returns
a reference to the underlying @ref array,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_array()`
*/
array const&
as_array() const
{
if(! is_array())
detail::throw_invalid_argument(
"array required",
BOOST_JSON_SOURCE_POS);
return arr_;
}
/** Return a reference to the underlying `string`, or throw an exception.
If @ref is_string() is `true`, returns
a reference to the underlying @ref string,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_string()`
*/
string&
as_string()
{
if(! is_string())
detail::throw_invalid_argument(
"not a string",
BOOST_JSON_SOURCE_POS);
return str_;
}
/** Return a reference to the underlying `string`, or throw an exception.
If @ref is_string() is `true`, returns
a reference to the underlying @ref string,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_string()`
*/
string const&
as_string() const
{
if(! is_string())
detail::throw_invalid_argument(
"not a string",
BOOST_JSON_SOURCE_POS);
return str_;
}
/** Return a reference to the underlying `std::int64_t`, or throw an exception.
If @ref is_int64() is `true`, returns
a reference to the underlying `std::int64_t`,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_int64()`
*/
std::int64_t&
as_int64()
{
if(! is_int64())
detail::throw_invalid_argument(
"not an int64",
BOOST_JSON_SOURCE_POS);
return sca_.i;
}
/** Return the underlying `std::int64_t`, or throw an exception.
If @ref is_int64() is `true`, returns
the underlying `std::int64_t`,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_int64()`
*/
std::int64_t
as_int64() const
{
if(! is_int64())
detail::throw_invalid_argument(
"not an int64",
BOOST_JSON_SOURCE_POS);
return sca_.i;
}
/** Return a reference to the underlying `std::uint64_t`, or throw an exception.
If @ref is_uint64() is `true`, returns
a reference to the underlying `std::uint64_t`,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_uint64()`
*/
std::uint64_t&
as_uint64()
{
if(! is_uint64())
detail::throw_invalid_argument(
"not a uint64",
BOOST_JSON_SOURCE_POS);
return sca_.u;
}
/** Return the underlying `std::uint64_t`, or throw an exception.
If @ref is_int64() is `true`, returns
the underlying `std::uint64_t`,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::length_error `! this->is_uint64()`
*/
std::uint64_t
as_uint64() const
{
if(! is_uint64())
detail::throw_invalid_argument(
"not a uint64",
BOOST_JSON_SOURCE_POS);
return sca_.u;
}
/** Return a reference to the underlying `double`, or throw an exception.
If @ref is_double() is `true`, returns
a reference to the underlying `double`,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_double()`
*/
double&
as_double()
{
if(! is_double())
detail::throw_invalid_argument(
"not a double",
BOOST_JSON_SOURCE_POS);
return sca_.d;
}
/** Return the underlying `double`, or throw an exception.
If @ref is_int64() is `true`, returns
the underlying `double`,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_double()`
*/
double
as_double() const
{
if(! is_double())
detail::throw_invalid_argument(
"not a double",
BOOST_JSON_SOURCE_POS);
return sca_.d;
}
/** Return a reference to the underlying `bool`, or throw an exception.
If @ref is_bool() is `true`, returns
a reference to the underlying `bool`,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_bool()`
*/
bool&
as_bool()
{
if(! is_bool())
detail::throw_invalid_argument(
"bool required",
BOOST_JSON_SOURCE_POS);
return sca_.b;
}
/** Return the underlying `bool`, or throw an exception.
If @ref is_bool() is `true`, returns
the underlying `bool`,
otherwise throws an exception.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@throw std::invalid_argument `! this->is_bool()`
*/
bool
as_bool() const
{
if(! is_bool())
detail::throw_invalid_argument(
"bool required",
BOOST_JSON_SOURCE_POS);
return sca_.b;
}
//------------------------------------------------------
/** Return a reference to the underlying `object`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_object()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
object&
get_object() noexcept
{
BOOST_ASSERT(is_object());
return obj_;
}
/** Return a reference to the underlying `object`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_object()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
object const&
get_object() const noexcept
{
BOOST_ASSERT(is_object());
return obj_;
}
/** Return a reference to the underlying `array`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_array()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
array&
get_array() noexcept
{
BOOST_ASSERT(is_array());
return arr_;
}
/** Return a reference to the underlying `array`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_array()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
array const&
get_array() const noexcept
{
BOOST_ASSERT(is_array());
return arr_;
}
/** Return a reference to the underlying `string`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_string()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
string&
get_string() noexcept
{
BOOST_ASSERT(is_string());
return str_;
}
/** Return a reference to the underlying `string`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_string()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
string const&
get_string() const noexcept
{
BOOST_ASSERT(is_string());
return str_;
}
/** Return a reference to the underlying `std::int64_t`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_int64()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
std::int64_t&
get_int64() noexcept
{
BOOST_ASSERT(is_int64());
return sca_.i;
}
/** Return the underlying `std::int64_t`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_int64()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
std::int64_t
get_int64() const noexcept
{
BOOST_ASSERT(is_int64());
return sca_.i;
}
/** Return a reference to the underlying `std::uint64_t`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_uint64()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
std::uint64_t&
get_uint64() noexcept
{
BOOST_ASSERT(is_uint64());
return sca_.u;
}
/** Return the underlying `std::uint64_t`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_uint64()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
std::uint64_t
get_uint64() const noexcept
{
BOOST_ASSERT(is_uint64());
return sca_.u;
}
/** Return a reference to the underlying `double`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_double()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
double&
get_double() noexcept
{
BOOST_ASSERT(is_double());
return sca_.d;
}
/** Return the underlying `double`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_double()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
double
get_double() const noexcept
{
BOOST_ASSERT(is_double());
return sca_.d;
}
/** Return a reference to the underlying `bool`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_bool()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool&
get_bool() noexcept
{
BOOST_ASSERT(is_bool());
return sca_.b;
}
/** Return the underlying `bool`, without checking.
This is the fastest way to access the underlying
representation when the kind is known in advance.
@par Preconditions
@code
this->is_bool()
@endcode
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
bool
get_bool() const noexcept
{
BOOST_ASSERT(is_bool());
return sca_.b;
}
//------------------------------------------------------
/** Access an element, with bounds checking.
This function is used to access elements of
the underlying object, or throw an exception
if the value is not an object.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@param key The key of the element to find.
@return `this->as_object().at( key )`.
*/
/** @{ */
value&
at(string_view key)
{
return as_object().at(key);
}
value const&
at(string_view key) const
{
return as_object().at(key);
}
/** @} */
/** Access an element, with bounds checking.
This function is used to access elements of
the underlying array, or throw an exception
if the value is not an array.
@par Complexity
Constant.
@par Exception Safety
Strong guarantee.
@param pos A zero-based array index.
@return `this->as_array().at( pos )`.
*/
/** @{ */
value &
at(std::size_t pos)
{
return as_array().at(pos);
}
value const&
at(std::size_t pos) const
{
return as_array().at(pos);
}
/** @} */
/** Access an element via JSON Pointer.
This function is used to access a (potentially nested)
element of the value using a JSON Pointer string.
@par Complexity
Linear in the sizes of `ptr` and underlying array, object, or string.
@par Exception Safety
Strong guarantee.
@param ptr JSON Pointer string.
@return reference to the element identified by `ptr`.
@throw system_error if an error occurs.
@see
<a href="https://datatracker.ietf.org/doc/html/rfc6901">
RFC 6901 - JavaScript Object Notation (JSON) Pointer</a>
*/
/** @{ */
BOOST_JSON_DECL
value const&
at_pointer(string_view ptr) const;
BOOST_JSON_DECL
value&
at_pointer(string_view ptr);
/** @} */
/** Access an element via JSON Pointer.
This function is used to access a (potentially nested)
element of the value using a JSON Pointer string.
@par Complexity
Linear in the sizes of `ptr` and underlying array, object, or string.
@par Exception Safety
No-throw guarantee.
@param ptr JSON Pointer string.
@param ec Set to the error, if any occurred.
@return pointer to the element identified by `ptr`.
@see
<a href="https://datatracker.ietf.org/doc/html/rfc6901">
RFC 6901 - JavaScript Object Notation (JSON) Pointer</a>
*/
/** @{ */
BOOST_JSON_DECL
value const*
find_pointer(string_view ptr, error_code& ec) const noexcept;
BOOST_JSON_DECL
value*
find_pointer(string_view ptr, error_code& ec) noexcept;
BOOST_JSON_DECL
value const*
find_pointer(string_view ptr, std::error_code& ec) const noexcept;
BOOST_JSON_DECL
value*
find_pointer(string_view ptr, std::error_code& ec) noexcept;
/** @} */
/** Return `true` if two values are equal.
Two values are equal when they are the
same kind and their referenced values
are equal, or when they are both integral
types and their integral representations
are equal.
@par Complexity
Constant or linear in the size of
the array, object, or string.
@par Exception Safety
No-throw guarantee.
*/
// inline friend speeds up overload resolution
friend
bool
operator==(
value const& lhs,
value const& rhs) noexcept
{
return lhs.equal(rhs);
}
/** Return `true` if two values are not equal.
Two values are equal when they are the
same kind and their referenced values
are equal, or when they are both integral
types and their integral representations
are equal.
@par Complexity
Constant or linear in the size of
the array, object, or string.
@par Exception Safety
No-throw guarantee.
*/
friend
bool
operator!=(
value const& lhs,
value const& rhs) noexcept
{
return ! (lhs == rhs);
}
private:
static
void
relocate(
value* dest,
value const& src) noexcept
{
std::memcpy(
static_cast<void*>(dest),
&src,
sizeof(src));
}
BOOST_JSON_DECL
storage_ptr
destroy() noexcept;
BOOST_JSON_DECL
bool
equal(value const& other) const noexcept;
template<class T>
auto
to_number(error& e) const noexcept ->
typename std::enable_if<
std::is_signed<T>::value &&
! std::is_floating_point<T>::value,
T>::type
{
if(sca_.k == json::kind::int64)
{
auto const i = sca_.i;
if( i >= (std::numeric_limits<T>::min)() &&
i <= (std::numeric_limits<T>::max)())
{
e = {};
return static_cast<T>(i);
}
e = error::not_exact;
}
else if(sca_.k == json::kind::uint64)
{
auto const u = sca_.u;
if(u <= static_cast<std::uint64_t>((
std::numeric_limits<T>::max)()))
{
e = {};
return static_cast<T>(u);
}
e = error::not_exact;
}
else if(sca_.k == json::kind::double_)
{
auto const d = sca_.d;
if( d >= static_cast<double>(
(detail::to_number_limit<T>::min)()) &&
d <= static_cast<double>(
(detail::to_number_limit<T>::max)()) &&
static_cast<T>(d) == d)
{
e = {};
return static_cast<T>(d);
}
e = error::not_exact;
}
else
{
e = error::not_number;
}
return T{};
}
template<class T>
auto
to_number(error& e) const noexcept ->
typename std::enable_if<
std::is_unsigned<T>::value &&
! std::is_same<T, bool>::value,
T>::type
{
if(sca_.k == json::kind::int64)
{
auto const i = sca_.i;
if( i >= 0 && static_cast<std::uint64_t>(i) <=
(std::numeric_limits<T>::max)())
{
e = {};
return static_cast<T>(i);
}
e = error::not_exact;
}
else if(sca_.k == json::kind::uint64)
{
auto const u = sca_.u;
if(u <= (std::numeric_limits<T>::max)())
{
e = {};
return static_cast<T>(u);
}
e = error::not_exact;
}
else if(sca_.k == json::kind::double_)
{
auto const d = sca_.d;
if( d >= 0 &&
d <= (detail::to_number_limit<T>::max)() &&
static_cast<T>(d) == d)
{
e = {};
return static_cast<T>(d);
}
e = error::not_exact;
}
else
{
e = error::not_number;
}
return T{};
}
template<class T>
auto
to_number(error& e) const noexcept ->
typename std::enable_if<
std::is_floating_point<
T>::value, T>::type
{
if(sca_.k == json::kind::int64)
{
e = {};
return static_cast<T>(sca_.i);
}
if(sca_.k == json::kind::uint64)
{
e = {};
return static_cast<T>(sca_.u);
}
if(sca_.k == json::kind::double_)
{
e = {};
return static_cast<T>(sca_.d);
}
e = error::not_number;
return {};
}
};
// Make sure things are as big as we think they should be
#if BOOST_JSON_ARCH == 64
BOOST_STATIC_ASSERT(sizeof(value) == 24);
#elif BOOST_JSON_ARCH == 32
BOOST_STATIC_ASSERT(sizeof(value) == 16);
#else
# error Unknown architecture
#endif
//----------------------------------------------------------
/** A key/value pair.
This is the type of element used by the @ref object
container.
*/
class key_value_pair
{
#ifndef BOOST_JSON_DOCS
friend struct detail::access;
using access = detail::access;
#endif
BOOST_JSON_DECL
static char const empty_[1];
inline
key_value_pair(
pilfered<json::value> k,
pilfered<json::value> v) noexcept;
public:
/// Copy assignment (deleted).
key_value_pair&
operator=(key_value_pair const&) = delete;
/** Destructor.
The value is destroyed and all internally
allocated memory is freed.
*/
~key_value_pair() noexcept
{
auto const& sp = value_.storage();
if(sp.is_not_shared_and_deallocate_is_trivial())
return;
if(key_ == empty_)
return;
sp->deallocate(const_cast<char*>(key_),
len_ + 1, alignof(char));
}
/** Copy constructor.
This constructs a key/value pair with a
copy of another key/value pair, using
the same memory resource as `other`.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The key/value pair to copy.
*/
key_value_pair(
key_value_pair const& other)
: key_value_pair(other,
other.storage())
{
}
/** Copy constructor.
This constructs a key/value pair with a
copy of another key/value pair, using
the specified memory resource.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param other The key/value pair to copy.
@param sp A pointer to the @ref memory_resource
to use. The element will acquire shared
ownership of the memory resource.
*/
BOOST_JSON_DECL
key_value_pair(
key_value_pair const& other,
storage_ptr sp);
/** Move constructor.
The pair is constructed by acquiring
ownership of the contents of `other` and
shared ownership of `other`'s memory resource.
@note
After construction, the moved-from pair holds an
empty key, and a null value with its current
storage pointer.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param other The pair to move.
*/
key_value_pair(
key_value_pair&& other) noexcept
: value_(std::move(other.value_))
, key_(detail::exchange(
other.key_, empty_))
, len_(detail::exchange(
other.len_, 0))
{
}
/** Pilfer constructor.
The pair is constructed by acquiring ownership
of the contents of `other` using pilfer semantics.
This is more efficient than move construction, when
it is known that the moved-from object will be
immediately destroyed afterwards.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
@param other The value to pilfer. After pilfer
construction, `other` is not in a usable state
and may only be destroyed.
@see @ref pilfer,
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0308r0.html">
Valueless Variants Considered Harmful</a>
*/
key_value_pair(
pilfered<key_value_pair> other) noexcept
: value_(pilfer(other.get().value_))
, key_(detail::exchange(
other.get().key_, empty_))
, len_(detail::exchange(
other.get().len_, 0))
{
}
/** Constructor.
This constructs a key/value pair.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param key The key string to use.
@param args Optional arguments forwarded to
the @ref value constructor.
*/
template<class... Args>
explicit
key_value_pair(
string_view key,
Args&&... args)
: value_(std::forward<Args>(args)...)
{
if(key.size() > string::max_size())
detail::throw_length_error(
"key too large",
BOOST_JSON_SOURCE_POS);
auto s = reinterpret_cast<
char*>(value_.storage()->
allocate(key.size() + 1, alignof(char)));
std::memcpy(s, key.data(), key.size());
s[key.size()] = 0;
key_ = s;
len_ = static_cast<
std::uint32_t>(key.size());
}
/** Constructor.
This constructs a key/value pair. A
copy of the specified value is made,
using the specified memory resource.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param p A `std::pair` with the key
string and @ref value to construct with.
@param sp A pointer to the @ref memory_resource
to use. The element will acquire shared
ownership of the memory resource.
*/
explicit
key_value_pair(
std::pair<
string_view,
json::value> const& p,
storage_ptr sp = {})
: key_value_pair(
p.first,
p.second,
std::move(sp))
{
}
/** Constructor.
This constructs a key/value pair.
Ownership of the specified value is
transferred by move construction.
@par Exception Safety
Strong guarantee.
Calls to `memory_resource::allocate` may throw.
@param p A `std::pair` with the key
string and @ref value to construct with.
@param sp A pointer to the @ref memory_resource
to use. The element will acquire shared
ownership of the memory resource.
*/
explicit
key_value_pair(
std::pair<
string_view,
json::value>&& p,
storage_ptr sp = {})
: key_value_pair(
p.first,
std::move(p).second,
std::move(sp))
{
}
/** Return the associated memory resource.
This returns a pointer to the memory
resource used to construct the value.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
storage_ptr const&
storage() const noexcept
{
return value_.storage();
}
/** Return the key of this element.
After construction, the key may
not be modified.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
string_view const
key() const noexcept
{
return { key_, len_ };
}
/** Return the key of this element as a null-terminated string.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
char const*
key_c_str() const noexcept
{
return key_;
}
/** Return the value of this element.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
json::value const&
value() const noexcept
{
return value_;
}
/** Return the value of this element.
@par Complexity
Constant.
@par Exception Safety
No-throw guarantee.
*/
json::value&
value() noexcept
{
return value_;
}
private:
json::value value_;
char const* key_;
std::uint32_t len_;
std::uint32_t next_;
};
//----------------------------------------------------------
#ifdef BOOST_JSON_DOCS
/** Tuple-like element access.
This overload permits the key and value
of a `key_value_pair` to be accessed
by index. For example:
@code
key_value_pair kvp("num", 42);
string_view key = get<0>(kvp);
value& jv = get<1>(kvp);
@endcode
@par Structured Bindings
When using C++17 or greater, objects of type
@ref key_value_pair may be used to initialize
structured bindings:
@code
key_value_pair kvp("num", 42);
auto& [key, value] = kvp;
@endcode
Depending on the value of `I`, the return type will be:
@li `string_view const` if `I == 0`, or
@li `value&`, `value const&`, or `value&&` if `I == 1`.
Any other value for `I` is ill-formed.
@tparam I The element index to access.
@par Constraints
`std::is_same_v< std::remove_cvref_t<T>, key_value_pair >`
@return `kvp.key()` if `I == 0`, or `kvp.value()`
if `I == 1`.
@param kvp The @ref key_value_pair object
to access.
*/
template<
std::size_t I,
class T>
__see_below__
get(T&& kvp) noexcept;
#else
template<std::size_t I>
auto
get(key_value_pair const&) noexcept ->
typename std::conditional<I == 0,
string_view const,
value const&>::type
{
static_assert(I == 0,
"key_value_pair index out of range");
}
template<std::size_t I>
auto
get(key_value_pair&) noexcept ->
typename std::conditional<I == 0,
string_view const,
value&>::type
{
static_assert(I == 0,
"key_value_pair index out of range");
}
template<std::size_t I>
auto
get(key_value_pair&&) noexcept ->
typename std::conditional<I == 0,
string_view const,
value&&>::type
{
static_assert(I == 0,
"key_value_pair index out of range");
}
/** Extracts a key_value_pair's key using tuple-like interface
*/
template<>
inline
string_view const
get<0>(key_value_pair const& kvp) noexcept
{
return kvp.key();
}
/** Extracts a key_value_pair's key using tuple-like interface
*/
template<>
inline
string_view const
get<0>(key_value_pair& kvp) noexcept
{
return kvp.key();
}
/** Extracts a key_value_pair's key using tuple-like interface
*/
template<>
inline
string_view const
get<0>(key_value_pair&& kvp) noexcept
{
return kvp.key();
}
/** Extracts a key_value_pair's value using tuple-like interface
*/
template<>
inline
value const&
get<1>(key_value_pair const& kvp) noexcept
{
return kvp.value();
}
/** Extracts a key_value_pair's value using tuple-like interface
*/
template<>
inline
value&
get<1>(key_value_pair& kvp) noexcept
{
return kvp.value();
}
/** Extracts a key_value_pair's value using tuple-like interface
*/
template<>
inline
value&&
get<1>(key_value_pair&& kvp) noexcept
{
return std::move(kvp.value());
}
#endif
BOOST_JSON_NS_END
#ifdef __clang__
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wmismatched-tags"
#endif
#ifndef BOOST_JSON_DOCS
namespace std {
/** Tuple-like size access for key_value_pair
*/
template<>
struct tuple_size< ::boost::json::key_value_pair >
: std::integral_constant<std::size_t, 2>
{
};
/** Tuple-like access for the key type of key_value_pair
*/
template<>
struct tuple_element<0, ::boost::json::key_value_pair>
{
using type = ::boost::json::string_view const;
};
/** Tuple-like access for the value type of key_value_pair
*/
template<>
struct tuple_element<1, ::boost::json::key_value_pair>
{
using type = ::boost::json::value&;
};
/** Tuple-like access for the value type of key_value_pair
*/
template<>
struct tuple_element<1, ::boost::json::key_value_pair const>
{
using type = ::boost::json::value const&;
};
} // std
#endif
// std::hash specialization
#ifndef BOOST_JSON_DOCS
namespace std {
template <>
struct hash< ::boost::json::value > {
BOOST_JSON_DECL
std::size_t
operator()(::boost::json::value const& jv) const noexcept;
};
} // std
#endif
#ifdef __clang__
# pragma clang diagnostic pop
#endif
// These are here because value, array,
// and object form cyclic references.
#include <boost/json/detail/impl/array.hpp>
#include <boost/json/impl/array.hpp>
#include <boost/json/impl/object.hpp>
// These must come after array and object
#include <boost/json/impl/value_ref.hpp>
#endif