313 lines
12 KiB
C++
313 lines
12 KiB
C++
// (C) Copyright 2007-2009 Andrew Sutton
|
|
//
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0 (See accompanying file
|
|
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_GRAPH_CLIQUE_HPP
|
|
#define BOOST_GRAPH_CLIQUE_HPP
|
|
|
|
#include <vector>
|
|
#include <deque>
|
|
#include <boost/config.hpp>
|
|
|
|
#include <boost/concept/assert.hpp>
|
|
|
|
#include <boost/graph/graph_concepts.hpp>
|
|
#include <boost/graph/lookup_edge.hpp>
|
|
|
|
#include <boost/concept/detail/concept_def.hpp>
|
|
namespace boost
|
|
{
|
|
namespace concepts
|
|
{
|
|
BOOST_concept(CliqueVisitor, (Visitor)(Clique)(Graph))
|
|
{
|
|
BOOST_CONCEPT_USAGE(CliqueVisitor) { vis.clique(k, g); }
|
|
|
|
private:
|
|
Visitor vis;
|
|
Graph g;
|
|
Clique k;
|
|
};
|
|
} /* namespace concepts */
|
|
using concepts::CliqueVisitorConcept;
|
|
} /* namespace boost */
|
|
#include <boost/concept/detail/concept_undef.hpp>
|
|
|
|
namespace boost
|
|
{
|
|
// The algorithm implemented in this paper is based on the so-called
|
|
// Algorithm 457, published as:
|
|
//
|
|
// @article{362367,
|
|
// author = {Coen Bron and Joep Kerbosch},
|
|
// title = {Algorithm 457: finding all cliques of an undirected graph},
|
|
// journal = {Communications of the ACM},
|
|
// volume = {16},
|
|
// number = {9},
|
|
// year = {1973},
|
|
// issn = {0001-0782},
|
|
// pages = {575--577},
|
|
// doi = {http://doi.acm.org/10.1145/362342.362367},
|
|
// publisher = {ACM Press},
|
|
// address = {New York, NY, USA},
|
|
// }
|
|
//
|
|
// Sort of. This implementation is adapted from the 1st version of the
|
|
// algorithm and does not implement the candidate selection optimization
|
|
// described as published - it could, it just doesn't yet.
|
|
//
|
|
// The algorithm is given as proportional to (3.14)^(n/3) power. This is
|
|
// not the same as O(...), but based on time measures and approximation.
|
|
//
|
|
// Unfortunately, this implementation may be less efficient on non-
|
|
// AdjacencyMatrix modeled graphs due to the non-constant implementation
|
|
// of the edge(u,v,g) functions.
|
|
//
|
|
// TODO: It might be worthwhile to provide functionality for passing
|
|
// a connectivity matrix to improve the efficiency of those lookups
|
|
// when needed. This could simply be passed as a BooleanMatrix
|
|
// s.t. edge(u,v,B) returns true or false. This could easily be
|
|
// abstracted for adjacency matricies.
|
|
//
|
|
// The following paper is interesting for a number of reasons. First,
|
|
// it lists a number of other such algorithms and second, it describes
|
|
// a new algorithm (that does not appear to require the edge(u,v,g)
|
|
// function and appears fairly efficient. It is probably worth investigating.
|
|
//
|
|
// @article{DBLP:journals/tcs/TomitaTT06,
|
|
// author = {Etsuji Tomita and Akira Tanaka and Haruhisa Takahashi},
|
|
// title = {The worst-case time complexity for generating all maximal
|
|
// cliques and computational experiments}, journal = {Theor. Comput.
|
|
// Sci.}, volume = {363}, number = {1}, year = {2006}, pages = {28-42}
|
|
// ee = {https://doi.org/10.1016/j.tcs.2006.06.015}
|
|
// }
|
|
|
|
/**
|
|
* The default clique_visitor supplies an empty visitation function.
|
|
*/
|
|
struct clique_visitor
|
|
{
|
|
template < typename VertexSet, typename Graph >
|
|
void clique(const VertexSet&, Graph&)
|
|
{
|
|
}
|
|
};
|
|
|
|
/**
|
|
* The max_clique_visitor records the size of the maximum clique (but not the
|
|
* clique itself).
|
|
*/
|
|
struct max_clique_visitor
|
|
{
|
|
max_clique_visitor(std::size_t& max) : maximum(max) {}
|
|
|
|
template < typename Clique, typename Graph >
|
|
inline void clique(const Clique& p, const Graph& g)
|
|
{
|
|
BOOST_USING_STD_MAX();
|
|
maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION(maximum, p.size());
|
|
}
|
|
std::size_t& maximum;
|
|
};
|
|
|
|
inline max_clique_visitor find_max_clique(std::size_t& max)
|
|
{
|
|
return max_clique_visitor(max);
|
|
}
|
|
|
|
namespace detail
|
|
{
|
|
template < typename Graph >
|
|
inline bool is_connected_to_clique(const Graph& g,
|
|
typename graph_traits< Graph >::vertex_descriptor u,
|
|
typename graph_traits< Graph >::vertex_descriptor v,
|
|
typename graph_traits< Graph >::undirected_category)
|
|
{
|
|
return lookup_edge(u, v, g).second;
|
|
}
|
|
|
|
template < typename Graph >
|
|
inline bool is_connected_to_clique(const Graph& g,
|
|
typename graph_traits< Graph >::vertex_descriptor u,
|
|
typename graph_traits< Graph >::vertex_descriptor v,
|
|
typename graph_traits< Graph >::directed_category)
|
|
{
|
|
// Note that this could alternate between using an || to determine
|
|
// full connectivity. I believe that this should produce strongly
|
|
// connected components. Note that using && instead of || will
|
|
// change the results to a fully connected subgraph (i.e., symmetric
|
|
// edges between all vertices s.t., if a->b, then b->a.
|
|
return lookup_edge(u, v, g).second && lookup_edge(v, u, g).second;
|
|
}
|
|
|
|
template < typename Graph, typename Container >
|
|
inline void filter_unconnected_vertices(const Graph& g,
|
|
typename graph_traits< Graph >::vertex_descriptor v,
|
|
const Container& in, Container& out)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((GraphConcept< Graph >));
|
|
|
|
typename graph_traits< Graph >::directed_category cat;
|
|
typename Container::const_iterator i, end = in.end();
|
|
for (i = in.begin(); i != end; ++i)
|
|
{
|
|
if (is_connected_to_clique(g, v, *i, cat))
|
|
{
|
|
out.push_back(*i);
|
|
}
|
|
}
|
|
}
|
|
|
|
template < typename Graph,
|
|
typename Clique, // compsub type
|
|
typename Container, // candidates/not type
|
|
typename Visitor >
|
|
void extend_clique(const Graph& g, Clique& clique, Container& cands,
|
|
Container& nots, Visitor vis, std::size_t min)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((GraphConcept< Graph >));
|
|
BOOST_CONCEPT_ASSERT((CliqueVisitorConcept< Visitor, Clique, Graph >));
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
|
|
// Is there vertex in nots that is connected to all vertices
|
|
// in the candidate set? If so, no clique can ever be found.
|
|
// This could be broken out into a separate function.
|
|
{
|
|
typename Container::iterator ni, nend = nots.end();
|
|
typename Container::iterator ci, cend = cands.end();
|
|
for (ni = nots.begin(); ni != nend; ++ni)
|
|
{
|
|
for (ci = cands.begin(); ci != cend; ++ci)
|
|
{
|
|
// if we don't find an edge, then we're okay.
|
|
if (!lookup_edge(*ni, *ci, g).second)
|
|
break;
|
|
}
|
|
// if we iterated all the way to the end, then *ni
|
|
// is connected to all *ci
|
|
if (ci == cend)
|
|
break;
|
|
}
|
|
// if we broke early, we found *ni connected to all *ci
|
|
if (ni != nend)
|
|
return;
|
|
}
|
|
|
|
// TODO: the original algorithm 457 describes an alternative
|
|
// (albeit really complicated) mechanism for selecting candidates.
|
|
// The given optimizaiton seeks to bring about the above
|
|
// condition sooner (i.e., there is a vertex in the not set
|
|
// that is connected to all candidates). unfortunately, the
|
|
// method they give for doing this is fairly unclear.
|
|
|
|
// basically, for every vertex in not, we should know how many
|
|
// vertices it is disconnected from in the candidate set. if
|
|
// we fix some vertex in the not set, then we want to keep
|
|
// choosing vertices that are not connected to that fixed vertex.
|
|
// apparently, by selecting fix point with the minimum number
|
|
// of disconnections (i.e., the maximum number of connections
|
|
// within the candidate set), then the previous condition wil
|
|
// be reached sooner.
|
|
|
|
// there's some other stuff about using the number of disconnects
|
|
// as a counter, but i'm jot really sure i followed it.
|
|
|
|
// TODO: If we min-sized cliques to visit, then theoretically, we
|
|
// should be able to stop recursing if the clique falls below that
|
|
// size - maybe?
|
|
|
|
// otherwise, iterate over candidates and and test
|
|
// for maxmimal cliquiness.
|
|
typename Container::iterator i, j;
|
|
for (i = cands.begin(); i != cands.end();)
|
|
{
|
|
Vertex candidate = *i;
|
|
|
|
// add the candidate to the clique (keeping the iterator!)
|
|
// typename Clique::iterator ci = clique.insert(clique.end(),
|
|
// candidate);
|
|
clique.push_back(candidate);
|
|
|
|
// remove it from the candidate set
|
|
i = cands.erase(i);
|
|
|
|
// build new candidate and not sets by removing all vertices
|
|
// that are not connected to the current candidate vertex.
|
|
// these actually invert the operation, adding them to the new
|
|
// sets if the vertices are connected. its semantically the same.
|
|
Container new_cands, new_nots;
|
|
filter_unconnected_vertices(g, candidate, cands, new_cands);
|
|
filter_unconnected_vertices(g, candidate, nots, new_nots);
|
|
|
|
if (new_cands.empty() && new_nots.empty())
|
|
{
|
|
// our current clique is maximal since there's nothing
|
|
// that's connected that we haven't already visited. If
|
|
// the clique is below our radar, then we won't visit it.
|
|
if (clique.size() >= min)
|
|
{
|
|
vis.clique(clique, g);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// recurse to explore the new candidates
|
|
extend_clique(g, clique, new_cands, new_nots, vis, min);
|
|
}
|
|
|
|
// we're done with this vertex, so we need to move it
|
|
// to the nots, and remove the candidate from the clique.
|
|
nots.push_back(candidate);
|
|
clique.pop_back();
|
|
}
|
|
}
|
|
} /* namespace detail */
|
|
|
|
template < typename Graph, typename Visitor >
|
|
inline void bron_kerbosch_all_cliques(
|
|
const Graph& g, Visitor vis, std::size_t min)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
|
|
BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >));
|
|
BOOST_CONCEPT_ASSERT(
|
|
(AdjacencyMatrixConcept< Graph >)); // Structural requirement only
|
|
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
|
|
typedef typename graph_traits< Graph >::vertex_iterator VertexIterator;
|
|
typedef std::vector< Vertex > VertexSet;
|
|
typedef std::deque< Vertex > Clique;
|
|
BOOST_CONCEPT_ASSERT((CliqueVisitorConcept< Visitor, Clique, Graph >));
|
|
|
|
// NOTE: We're using a deque to implement the clique, because it provides
|
|
// constant inserts and removals at the end and also a constant size.
|
|
|
|
VertexIterator i, end;
|
|
boost::tie(i, end) = vertices(g);
|
|
VertexSet cands(i, end); // start with all vertices as candidates
|
|
VertexSet nots; // start with no vertices visited
|
|
|
|
Clique clique; // the first clique is an empty vertex set
|
|
detail::extend_clique(g, clique, cands, nots, vis, min);
|
|
}
|
|
|
|
// NOTE: By default the minimum number of vertices per clique is set at 2
|
|
// because singleton cliques aren't really very interesting.
|
|
template < typename Graph, typename Visitor >
|
|
inline void bron_kerbosch_all_cliques(const Graph& g, Visitor vis)
|
|
{
|
|
bron_kerbosch_all_cliques(g, vis, 2);
|
|
}
|
|
|
|
template < typename Graph >
|
|
inline std::size_t bron_kerbosch_clique_number(const Graph& g)
|
|
{
|
|
std::size_t ret = 0;
|
|
bron_kerbosch_all_cliques(g, find_max_clique(ret));
|
|
return ret;
|
|
}
|
|
|
|
} /* namespace boost */
|
|
|
|
#endif
|