libcarla/include/system/boost/geometry/strategy/cartesian/side_by_triangle.hpp
2024-10-18 13:19:59 +08:00

259 lines
8.0 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2015 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2015 Mateusz Loskot, London, UK.
// This file was modified by Oracle on 2015-2021.
// Modifications copyright (c) 2015-2021, Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGY_CARTESIAN_SIDE_BY_TRIANGLE_HPP
#define BOOST_GEOMETRY_STRATEGY_CARTESIAN_SIDE_BY_TRIANGLE_HPP
#include <type_traits>
#include <boost/geometry/core/config.hpp>
#include <boost/geometry/arithmetic/determinant.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/strategies/cartesian/point_in_point.hpp>
#include <boost/geometry/strategies/compare.hpp>
#include <boost/geometry/strategies/side.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/util/select_most_precise.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace side
{
/*!
\brief Check at which side of a segment a point lies:
left of segment (> 0), right of segment (< 0), on segment (0)
\ingroup strategies
\tparam CalculationType \tparam_calculation
*/
template <typename CalculationType = void>
class side_by_triangle
{
template <typename Policy>
struct eps_policy
{
eps_policy() {}
template <typename Type>
eps_policy(Type const& a, Type const& b, Type const& c, Type const& d)
: policy(a, b, c, d)
{}
Policy policy;
};
struct eps_empty
{
eps_empty() {}
template <typename Type>
eps_empty(Type const&, Type const&, Type const&, Type const&) {}
};
public :
using cs_tag = cartesian_tag;
// Template member function, because it is not always trivial
// or convenient to explicitly mention the typenames in the
// strategy-struct itself.
// Types can be all three different. Therefore it is
// not implemented (anymore) as "segment"
template
<
typename CoordinateType,
typename PromotedType,
typename P1,
typename P2,
typename P,
typename EpsPolicy
>
static inline
PromotedType side_value(P1 const& p1, P2 const& p2, P const& p, EpsPolicy & eps_policy)
{
CoordinateType const x = get<0>(p);
CoordinateType const y = get<1>(p);
CoordinateType const sx1 = get<0>(p1);
CoordinateType const sy1 = get<1>(p1);
CoordinateType const sx2 = get<0>(p2);
CoordinateType const sy2 = get<1>(p2);
PromotedType const dx = sx2 - sx1;
PromotedType const dy = sy2 - sy1;
PromotedType const dpx = x - sx1;
PromotedType const dpy = y - sy1;
eps_policy = EpsPolicy(dx, dy, dpx, dpy);
return geometry::detail::determinant<PromotedType>
(
dx, dy,
dpx, dpy
);
}
template
<
typename CoordinateType,
typename PromotedType,
typename P1,
typename P2,
typename P
>
static inline
PromotedType side_value(P1 const& p1, P2 const& p2, P const& p)
{
eps_empty dummy;
return side_value<CoordinateType, PromotedType>(p1, p2, p, dummy);
}
template
<
typename CoordinateType,
typename PromotedType,
bool AreAllIntegralCoordinates
>
struct compute_side_value
{
template <typename P1, typename P2, typename P, typename EpsPolicy>
static inline PromotedType apply(P1 const& p1, P2 const& p2, P const& p, EpsPolicy & epsp)
{
return side_value<CoordinateType, PromotedType>(p1, p2, p, epsp);
}
};
template <typename CoordinateType, typename PromotedType>
struct compute_side_value<CoordinateType, PromotedType, false>
{
template <typename P1, typename P2, typename P, typename EpsPolicy>
static inline PromotedType apply(P1 const& p1, P2 const& p2, P const& p, EpsPolicy & epsp)
{
// For robustness purposes, first check if any two points are
// the same; in this case simply return that the points are
// collinear
if (equals_point_point(p1, p2)
|| equals_point_point(p1, p)
|| equals_point_point(p2, p))
{
return PromotedType(0);
}
// The side_by_triangle strategy computes the signed area of
// the point triplet (p1, p2, p); as such it is (in theory)
// invariant under cyclic permutations of its three arguments.
//
// In the context of numerical errors that arise in
// floating-point computations, and in order to make the strategy
// consistent with respect to cyclic permutations of its three
// arguments, we cyclically permute them so that the first
// argument is always the lexicographically smallest point.
using less = compare::cartesian<compare::less>;
if (less::apply(p, p1))
{
if (less::apply(p, p2))
{
// p is the lexicographically smallest
return side_value<CoordinateType, PromotedType>(p, p1, p2, epsp);
}
else
{
// p2 is the lexicographically smallest
return side_value<CoordinateType, PromotedType>(p2, p, p1, epsp);
}
}
if (less::apply(p1, p2))
{
// p1 is the lexicographically smallest
return side_value<CoordinateType, PromotedType>(p1, p2, p, epsp);
}
else
{
// p2 is the lexicographically smallest
return side_value<CoordinateType, PromotedType>(p2, p, p1, epsp);
}
}
};
template <typename P1, typename P2, typename P>
static inline int apply(P1 const& p1, P2 const& p2, P const& p)
{
using coor_t = typename select_calculation_type_alt<CalculationType, P1, P2, P>::type;
// Promote float->double, small int->int
using promoted_t = typename select_most_precise<coor_t, double>::type;
bool const are_all_integral_coordinates =
std::is_integral<typename coordinate_type<P1>::type>::value
&& std::is_integral<typename coordinate_type<P2>::type>::value
&& std::is_integral<typename coordinate_type<P>::type>::value;
eps_policy< math::detail::equals_factor_policy<promoted_t> > epsp;
promoted_t s = compute_side_value
<
coor_t, promoted_t, are_all_integral_coordinates
>::apply(p1, p2, p, epsp);
promoted_t const zero = promoted_t();
return math::detail::equals_by_policy(s, zero, epsp.policy) ? 0
: s > zero ? 1
: -1;
}
private:
template <typename P1, typename P2>
static inline bool equals_point_point(P1 const& p1, P2 const& p2)
{
return strategy::within::cartesian_point_point::apply(p1, p2);
}
};
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace services
{
template <typename CalculationType>
struct default_strategy<cartesian_tag, CalculationType>
{
using type = side_by_triangle<CalculationType>;
};
}
#endif
}} // namespace strategy::side
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGY_CARTESIAN_SIDE_BY_TRIANGLE_HPP