libcarla/include/system/boost/geometry/strategies/spherical/intersection.hpp
2024-10-18 13:19:59 +08:00

970 lines
36 KiB
C++

// Boost.Geometry
// Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.
// Copyright (c) 2016-2021, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
#define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
#include <algorithm>
#include <type_traits>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/radian_access.hpp>
#include <boost/geometry/core/tags.hpp>
#include <boost/geometry/algorithms/detail/assign_values.hpp>
#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
#include <boost/geometry/algorithms/detail/recalculate.hpp>
#include <boost/geometry/arithmetic/arithmetic.hpp>
#include <boost/geometry/arithmetic/cross_product.hpp>
#include <boost/geometry/arithmetic/dot_product.hpp>
#include <boost/geometry/arithmetic/normalize.hpp>
#include <boost/geometry/formulas/spherical.hpp>
#include <boost/geometry/geometries/concepts/point_concept.hpp>
#include <boost/geometry/geometries/concepts/segment_concept.hpp>
#include <boost/geometry/geometries/segment.hpp>
#include <boost/geometry/policies/robustness/segment_ratio.hpp>
#include <boost/geometry/strategy/spherical/area.hpp>
#include <boost/geometry/strategy/spherical/envelope.hpp>
#include <boost/geometry/strategy/spherical/expand_box.hpp>
#include <boost/geometry/strategy/spherical/expand_segment.hpp>
#include <boost/geometry/strategies/covered_by.hpp>
#include <boost/geometry/strategies/intersection.hpp>
#include <boost/geometry/strategies/intersection_result.hpp>
#include <boost/geometry/strategies/side.hpp>
#include <boost/geometry/strategies/side_info.hpp>
#include <boost/geometry/strategies/spherical/disjoint_box_box.hpp>
#include <boost/geometry/strategies/spherical/disjoint_segment_box.hpp>
#include <boost/geometry/strategies/spherical/distance_haversine.hpp>
#include <boost/geometry/strategies/spherical/point_in_point.hpp>
#include <boost/geometry/strategies/spherical/point_in_poly_winding.hpp>
#include <boost/geometry/strategies/spherical/ssf.hpp>
#include <boost/geometry/strategies/within.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace intersection
{
// NOTE:
// The coordinates of crossing IP may be calculated with small precision in some cases.
// For double, near the equator noticed error ~1e-9 so far greater than
// machine epsilon which is ~1e-16. This error is ~0.04m.
// E.g. consider two cases, one near the origin and the second one rotated by 90 deg around Z or SN axis.
// After the conversion from spherical degrees to cartesian 3d the following coordinates
// are calculated:
// for sph (-1 -1, 1 1) deg cart3d ys are -0.017449748351250485 and 0.017449748351250485
// for sph (89 -1, 91 1) deg cart3d xs are 0.017449748351250571 and -0.017449748351250450
// During the conversion degrees must first be converted to radians and then radians
// are passed into trigonometric functions. The error may have several causes:
// 1. Radians cannot represent exactly the same angles as degrees.
// 2. Different longitudes are passed into sin() for x, corresponding to cos() for y,
// and for different angle the error of the result may be different.
// 3. These non-corresponding cartesian coordinates are used in calculation,
// e.g. multiplied several times in cross and dot products.
// If it was a problem this strategy could e.g. "normalize" longitudes before the conversion using the source units
// by rotating the globe around Z axis, so moving longitudes always the same way towards the origin,
// assuming this could help which is not clear.
// For now, intersection points near the endpoints are checked explicitly if needed (if the IP is near the endpoint)
// to generate precise result for them. Only the crossing (i) case may suffer from lower precision.
template
<
typename CalcPolicy,
typename CalculationType = void
>
struct ecef_segments
{
typedef spherical_tag cs_tag;
enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };
// segment_intersection_info cannot outlive relate_ecef_segments
template <typename CoordinateType, typename SegmentRatio, typename Vector3d>
struct segment_intersection_info
{
segment_intersection_info(CalcPolicy const& calc)
: calc_policy(calc)
{}
template <typename Point, typename Segment1, typename Segment2>
void calculate(Point& point, Segment1 const& a, Segment2 const& b) const
{
if (ip_flag == ipi_inters)
{
// TODO: assign the rest of coordinates
point = calc_policy.template from_cart3d<Point>(intersection_point);
}
else if (ip_flag == ipi_at_a1)
{
detail::assign_point_from_index<0>(a, point);
}
else if (ip_flag == ipi_at_a2)
{
detail::assign_point_from_index<1>(a, point);
}
else if (ip_flag == ipi_at_b1)
{
detail::assign_point_from_index<0>(b, point);
}
else // ip_flag == ipi_at_b2
{
detail::assign_point_from_index<1>(b, point);
}
}
Vector3d intersection_point;
SegmentRatio robust_ra;
SegmentRatio robust_rb;
intersection_point_flag ip_flag;
CalcPolicy const& calc_policy;
};
// Relate segments a and b
template
<
typename UniqueSubRange1,
typename UniqueSubRange2,
typename Policy
>
static inline typename Policy::return_type
apply(UniqueSubRange1 const& range_p, UniqueSubRange2 const& range_q,
Policy const&)
{
// For now create it using default constructor. In the future it could
// be stored in strategy. However then apply() wouldn't be static and
// all relops and setops would have to take the strategy or model.
// Initialize explicitly to prevent compiler errors in case of PoD type
CalcPolicy const calc_policy = CalcPolicy();
typedef typename UniqueSubRange1::point_type point1_type;
typedef typename UniqueSubRange2::point_type point2_type;
BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point1_type>) );
BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point2_type>) );
point1_type const& a1 = range_p.at(0);
point1_type const& a2 = range_p.at(1);
point2_type const& b1 = range_q.at(0);
point2_type const& b2 = range_q.at(1);
typedef model::referring_segment<point1_type const> segment1_type;
typedef model::referring_segment<point2_type const> segment2_type;
segment1_type const a(a1, a2);
segment2_type const b(b1, b2);
// TODO: check only 2 first coordinates here?
bool a_is_point = equals_point_point(a1, a2);
bool b_is_point = equals_point_point(b1, b2);
if(a_is_point && b_is_point)
{
return equals_point_point(a1, b2)
? Policy::degenerate(a, true)
: Policy::disjoint()
;
}
typedef typename select_calculation_type
<segment1_type, segment2_type, CalculationType>::type calc_t;
calc_t const c0 = 0;
calc_t const c1 = 1;
typedef model::point<calc_t, 3, cs::cartesian> vec3d_t;
vec3d_t const a1v = calc_policy.template to_cart3d<vec3d_t>(a1);
vec3d_t const a2v = calc_policy.template to_cart3d<vec3d_t>(a2);
vec3d_t const b1v = calc_policy.template to_cart3d<vec3d_t>(b1);
vec3d_t const b2v = calc_policy.template to_cart3d<vec3d_t>(b2);
bool degen_neq_coords = false;
side_info sides;
typename CalcPolicy::template plane<vec3d_t>
plane2 = calc_policy.get_plane(b1v, b2v);
calc_t dist_b1_b2 = 0;
if (! b_is_point)
{
calculate_dist(b1v, b2v, plane2, dist_b1_b2);
if (math::equals(dist_b1_b2, c0))
{
degen_neq_coords = true;
b_is_point = true;
dist_b1_b2 = 0;
}
else
{
// not normalized normals, the same as in side strategy
sides.set<0>(plane2.side_value(a1v), plane2.side_value(a2v));
if (sides.same<0>())
{
// Both points are at same side of other segment, we can leave
return Policy::disjoint();
}
}
}
typename CalcPolicy::template plane<vec3d_t>
plane1 = calc_policy.get_plane(a1v, a2v);
calc_t dist_a1_a2 = 0;
if (! a_is_point)
{
calculate_dist(a1v, a2v, plane1, dist_a1_a2);
if (math::equals(dist_a1_a2, c0))
{
degen_neq_coords = true;
a_is_point = true;
dist_a1_a2 = 0;
}
else
{
// not normalized normals, the same as in side strategy
sides.set<1>(plane1.side_value(b1v), plane1.side_value(b2v));
if (sides.same<1>())
{
// Both points are at same side of other segment, we can leave
return Policy::disjoint();
}
}
}
// NOTE: at this point the segments may still be disjoint
calc_t len1 = 0;
// point or opposite sides of a sphere/spheroid, assume point
if (! a_is_point && ! detail::vec_normalize(plane1.normal, len1))
{
a_is_point = true;
if (sides.get<0, 0>() == 0 || sides.get<0, 1>() == 0)
{
sides.set<0>(0, 0);
}
}
calc_t len2 = 0;
if (! b_is_point && ! detail::vec_normalize(plane2.normal, len2))
{
b_is_point = true;
if (sides.get<1, 0>() == 0 || sides.get<1, 1>() == 0)
{
sides.set<1>(0, 0);
}
}
// check both degenerated once more
if (a_is_point && b_is_point)
{
return equals_point_point(a1, b2)
? Policy::degenerate(a, true)
: Policy::disjoint()
;
}
// NOTE: at this point the segments may still be disjoint
// NOTE: at this point one of the segments may be degenerated
bool collinear = sides.collinear();
if (! collinear)
{
// NOTE: for some approximations it's possible that both points may lie
// on the same geodesic but still some of the sides may be != 0.
// This is e.g. true for long segments represented as elliptic arcs
// with origin different than the center of the coordinate system.
// So make the sides consistent
// WARNING: the side strategy doesn't have the info about the other
// segment so it may return results inconsistent with this intersection
// strategy, as it checks both segments for consistency
if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0)
{
collinear = true;
sides.set<1>(0, 0);
}
else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0)
{
collinear = true;
sides.set<0>(0, 0);
}
}
calc_t dot_n1n2 = dot_product(plane1.normal, plane2.normal);
// NOTE: this is technically not needed since theoretically above sides
// are calculated, but just in case check the normals.
// Have in mind that SSF side strategy doesn't check this.
// collinear if normals are equal or opposite: cos(a) in {-1, 1}
if (! collinear && math::equals(math::abs(dot_n1n2), c1))
{
collinear = true;
sides.set<0>(0, 0);
sides.set<1>(0, 0);
}
if (collinear)
{
if (a_is_point)
{
return collinear_one_degenerated<Policy, calc_t>(a, true, b1, b2, a1, a2, b1v, b2v,
plane2, a1v, a2v, dist_b1_b2, degen_neq_coords);
}
else if (b_is_point)
{
// b2 used to be consistent with (degenerated) checks above (is it needed?)
return collinear_one_degenerated<Policy, calc_t>(b, false, a1, a2, b1, b2, a1v, a2v,
plane1, b1v, b2v, dist_a1_a2, degen_neq_coords);
}
else
{
calc_t dist_a1_b1, dist_a1_b2;
calc_t dist_b1_a1, dist_b1_a2;
calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, plane1, b1v, b2v, dist_a1_a2, dist_a1_b1);
calculate_collinear_data(a1, a2, b2, b1, a1v, a2v, plane1, b2v, b1v, dist_a1_a2, dist_a1_b2);
calculate_collinear_data(b1, b2, a1, a2, b1v, b2v, plane2, a1v, a2v, dist_b1_b2, dist_b1_a1);
calculate_collinear_data(b1, b2, a2, a1, b1v, b2v, plane2, a2v, a1v, dist_b1_b2, dist_b1_a2);
// NOTE: The following optimization causes problems with consitency
// It may either be caused by numerical issues or the way how distance is coded:
// as cosine of angle scaled and translated, see: calculate_dist()
/*dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
dist_b1_a1 = -dist_a1_b1;
dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
dist_a1_b1 = -dist_b1_a1;
dist_a1_b2 = dist_b1_b2 - dist_b1_a1;*/
segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);
// NOTE: this is probably not needed
int const a1_wrt_b = position_value(c0, dist_a1_b1, dist_a1_b2);
int const a2_wrt_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
int const b1_wrt_a = position_value(c0, dist_b1_a1, dist_b1_a2);
int const b2_wrt_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);
if (a1_wrt_b == 1)
{
ra_from.assign(0, dist_b1_b2);
rb_from.assign(0, dist_a1_a2);
}
else if (a1_wrt_b == 3)
{
ra_from.assign(dist_b1_b2, dist_b1_b2);
rb_to.assign(0, dist_a1_a2);
}
if (a2_wrt_b == 1)
{
ra_to.assign(0, dist_b1_b2);
rb_from.assign(dist_a1_a2, dist_a1_a2);
}
else if (a2_wrt_b == 3)
{
ra_to.assign(dist_b1_b2, dist_b1_b2);
rb_to.assign(dist_a1_a2, dist_a1_a2);
}
if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3))
{
return Policy::disjoint();
}
bool const opposite = dot_n1n2 < c0;
return Policy::segments_collinear(a, b, opposite,
a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a,
ra_from, ra_to, rb_from, rb_to);
}
}
else // crossing
{
if (a_is_point || b_is_point)
{
return Policy::disjoint();
}
vec3d_t i1;
intersection_point_flag ip_flag;
calc_t dist_a1_i1, dist_b1_i1;
if (calculate_ip_data(a1, a2, b1, b2, a1v, a2v, b1v, b2v,
plane1, plane2, calc_policy,
sides, dist_a1_a2, dist_b1_b2,
i1, dist_a1_i1, dist_b1_i1, ip_flag))
{
// intersects
segment_intersection_info
<
calc_t,
segment_ratio<calc_t>,
vec3d_t
> sinfo(calc_policy);
sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
sinfo.intersection_point = i1;
sinfo.ip_flag = ip_flag;
return Policy::segments_crosses(sides, sinfo, a, b);
}
else
{
return Policy::disjoint();
}
}
}
private:
template <typename Policy, typename CalcT, typename Segment, typename Point1, typename Point2, typename Vec3d, typename Plane>
static inline typename Policy::return_type
collinear_one_degenerated(Segment const& segment, bool degenerated_a,
Point1 const& a1, Point1 const& a2,
Point2 const& b1, Point2 const& b2,
Vec3d const& a1v, Vec3d const& a2v,
Plane const& plane,
Vec3d const& b1v, Vec3d const& b2v,
CalcT const& dist_1_2,
bool degen_neq_coords)
{
CalcT dist_1_o;
return ! calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, plane, b1v, b2v, dist_1_2, dist_1_o, degen_neq_coords)
? Policy::disjoint()
: Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
}
template <typename Point1, typename Point2, typename Vec3d, typename Plane, typename CalcT>
static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in
Point2 const& b1, Point2 const& /*b2*/, // in
Vec3d const& a1v, // in
Vec3d const& a2v, // in
Plane const& plane1, // in
Vec3d const& b1v, // in
Vec3d const& b2v, // in
CalcT const& dist_a1_a2, // in
CalcT& dist_a1_b1, // out
bool degen_neq_coords = false) // in
{
// calculate dist_a1_b1
calculate_dist(a1v, a2v, plane1, b1v, dist_a1_b1);
// if b1 is equal to a1
if (is_endpoint_equal(dist_a1_b1, a1, b1))
{
dist_a1_b1 = 0;
return true;
}
// or b1 is equal to a2
else if (is_endpoint_equal(dist_a1_a2 - dist_a1_b1, a2, b1))
{
dist_a1_b1 = dist_a1_a2;
return true;
}
// check the other endpoint of degenerated segment near a pole
if (degen_neq_coords)
{
static CalcT const c0 = 0;
CalcT dist_a1_b2 = 0;
calculate_dist(a1v, a2v, plane1, b2v, dist_a1_b2);
if (math::equals(dist_a1_b2, c0))
{
dist_a1_b1 = 0;
return true;
}
else if (math::equals(dist_a1_a2 - dist_a1_b2, c0))
{
dist_a1_b1 = dist_a1_a2;
return true;
}
}
// or i1 is on b
return segment_ratio<CalcT>(dist_a1_b1, dist_a1_a2).on_segment();
}
template <typename Point1, typename Point2, typename Vec3d, typename Plane, typename CalcT>
static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in
Point2 const& b1, Point2 const& b2, // in
Vec3d const& a1v, Vec3d const& a2v, // in
Vec3d const& b1v, Vec3d const& b2v, // in
Plane const& plane1, // in
Plane const& plane2, // in
CalcPolicy const& calc_policy, // in
side_info const& sides, // in
CalcT const& dist_a1_a2, // in
CalcT const& dist_b1_b2, // in
Vec3d & ip, // out
CalcT& dist_a1_ip, // out
CalcT& dist_b1_ip, // out
intersection_point_flag& ip_flag) // out
{
Vec3d ip1, ip2;
calc_policy.intersection_points(plane1, plane2, ip1, ip2);
calculate_dist(a1v, a2v, plane1, ip1, dist_a1_ip);
ip = ip1;
// choose the opposite side of the globe if the distance is shorter
{
CalcT const d = abs_distance(dist_a1_a2, dist_a1_ip);
if (d > CalcT(0))
{
// TODO: this should be ok not only for sphere
// but requires more investigation
CalcT const dist_a1_i2 = dist_of_i2(dist_a1_ip);
CalcT const d2 = abs_distance(dist_a1_a2, dist_a1_i2);
if (d2 < d)
{
dist_a1_ip = dist_a1_i2;
ip = ip2;
}
}
}
bool is_on_a = false, is_near_a1 = false, is_near_a2 = false;
if (! is_potentially_crossing(dist_a1_a2, dist_a1_ip, is_on_a, is_near_a1, is_near_a2))
{
return false;
}
calculate_dist(b1v, b2v, plane2, ip, dist_b1_ip);
bool is_on_b = false, is_near_b1 = false, is_near_b2 = false;
if (! is_potentially_crossing(dist_b1_b2, dist_b1_ip, is_on_b, is_near_b1, is_near_b2))
{
return false;
}
// reassign the IP if some endpoints overlap
if (is_near_a1)
{
if (is_near_b1 && equals_point_point(a1, b1))
{
dist_a1_ip = 0;
dist_b1_ip = 0;
//i1 = a1v;
ip_flag = ipi_at_a1;
return true;
}
if (is_near_b2 && equals_point_point(a1, b2))
{
dist_a1_ip = 0;
dist_b1_ip = dist_b1_b2;
//i1 = a1v;
ip_flag = ipi_at_a1;
return true;
}
}
if (is_near_a2)
{
if (is_near_b1 && equals_point_point(a2, b1))
{
dist_a1_ip = dist_a1_a2;
dist_b1_ip = 0;
//i1 = a2v;
ip_flag = ipi_at_a2;
return true;
}
if (is_near_b2 && equals_point_point(a2, b2))
{
dist_a1_ip = dist_a1_a2;
dist_b1_ip = dist_b1_b2;
//i1 = a2v;
ip_flag = ipi_at_a2;
return true;
}
}
// at this point we know that the endpoints doesn't overlap
// reassign IP and distance if the IP is on a segment and one of
// the endpoints of the other segment lies on the former segment
if (is_on_a)
{
if (is_near_b1 && sides.template get<1, 0>() == 0) // b1 wrt a
{
calculate_dist(a1v, a2v, plane1, b1v, dist_a1_ip); // for consistency
dist_b1_ip = 0;
//i1 = b1v;
ip_flag = ipi_at_b1;
return true;
}
if (is_near_b2 && sides.template get<1, 1>() == 0) // b2 wrt a
{
calculate_dist(a1v, a2v, plane1, b2v, dist_a1_ip); // for consistency
dist_b1_ip = dist_b1_b2;
//i1 = b2v;
ip_flag = ipi_at_b2;
return true;
}
}
if (is_on_b)
{
if (is_near_a1 && sides.template get<0, 0>() == 0) // a1 wrt b
{
dist_a1_ip = 0;
calculate_dist(b1v, b2v, plane2, a1v, dist_b1_ip); // for consistency
//i1 = a1v;
ip_flag = ipi_at_a1;
return true;
}
if (is_near_a2 && sides.template get<0, 1>() == 0) // a2 wrt b
{
dist_a1_ip = dist_a1_a2;
calculate_dist(b1v, b2v, plane2, a2v, dist_b1_ip); // for consistency
//i1 = a2v;
ip_flag = ipi_at_a2;
return true;
}
}
ip_flag = ipi_inters;
return is_on_a && is_on_b;
}
template <typename Vec3d, typename Plane, typename CalcT>
static inline void calculate_dist(Vec3d const& a1v, // in
Vec3d const& a2v, // in
Plane const& plane1, // in
CalcT& dist_a1_a2) // out
{
static CalcT const c1 = 1;
CalcT const cos_a1_a2 = plane1.cos_angle_between(a1v, a2v);
dist_a1_a2 = -cos_a1_a2 + c1; // [1, -1] -> [0, 2] representing [0, pi]
}
template <typename Vec3d, typename Plane, typename CalcT>
static inline void calculate_dist(Vec3d const& a1v, // in
Vec3d const& /*a2v*/, // in
Plane const& plane1, // in
Vec3d const& i1, // in
CalcT& dist_a1_i1) // out
{
static CalcT const c1 = 1;
static CalcT const c2 = 2;
static CalcT const c4 = 4;
bool is_forward = true;
CalcT cos_a1_i1 = plane1.cos_angle_between(a1v, i1, is_forward);
dist_a1_i1 = -cos_a1_i1 + c1; // [0, 2] representing [0, pi]
if (! is_forward) // left or right of a1 on a
{
dist_a1_i1 = -dist_a1_i1; // [0, 2] -> [0, -2] representing [0, -pi]
}
if (dist_a1_i1 <= -c2) // <= -pi
{
dist_a1_i1 += c4; // += 2pi
}
}
/*
template <typename Vec3d, typename Plane, typename CalcT>
static inline void calculate_dists(Vec3d const& a1v, // in
Vec3d const& a2v, // in
Plane const& plane1, // in
Vec3d const& i1, // in
CalcT& dist_a1_a2, // out
CalcT& dist_a1_i1) // out
{
calculate_dist(a1v, a2v, plane1, dist_a1_a2);
calculate_dist(a1v, a2v, plane1, i1, dist_a1_i1);
}
*/
// the dist of the ip on the other side of the sphere
template <typename CalcT>
static inline CalcT dist_of_i2(CalcT const& dist_a1_i1)
{
CalcT const c2 = 2;
CalcT const c4 = 4;
CalcT dist_a1_i2 = dist_a1_i1 - c2; // dist_a1_i2 = dist_a1_i1 - pi;
if (dist_a1_i2 <= -c2) // <= -pi
{
dist_a1_i2 += c4; // += 2pi;
}
return dist_a1_i2;
}
template <typename CalcT>
static inline CalcT abs_distance(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1)
{
if (dist_a1_i1 < CalcT(0))
return -dist_a1_i1;
else if (dist_a1_i1 > dist_a1_a2)
return dist_a1_i1 - dist_a1_a2;
else
return CalcT(0);
}
template <typename CalcT>
static inline bool is_potentially_crossing(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1, // in
bool& is_on_a, bool& is_near_a1, bool& is_near_a2) // out
{
is_on_a = segment_ratio<CalcT>(dist_a1_i1, dist_a1_a2).on_segment();
is_near_a1 = is_near(dist_a1_i1);
is_near_a2 = is_near(dist_a1_a2 - dist_a1_i1);
return is_on_a || is_near_a1 || is_near_a2;
}
template <typename CalcT, typename P1, typename P2>
static inline bool is_endpoint_equal(CalcT const& dist,
P1 const& ai, P2 const& b1)
{
static CalcT const c0 = 0;
return is_near(dist) && (math::equals(dist, c0) || equals_point_point(ai, b1));
}
template <typename CalcT>
static inline bool is_near(CalcT const& dist)
{
CalcT const small_number = CalcT(std::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
return math::abs(dist) <= small_number;
}
template <typename ProjCoord1, typename ProjCoord2>
static inline int position_value(ProjCoord1 const& ca1,
ProjCoord2 const& cb1,
ProjCoord2 const& cb2)
{
// S1x 0 1 2 3 4
// S2 |---------->
return math::equals(ca1, cb1) ? 1
: math::equals(ca1, cb2) ? 3
: cb1 < cb2 ?
( ca1 < cb1 ? 0
: ca1 > cb2 ? 4
: 2 )
: ( ca1 > cb1 ? 0
: ca1 < cb2 ? 4
: 2 );
}
template <typename Point1, typename Point2>
static inline bool equals_point_point(Point1 const& point1, Point2 const& point2)
{
return strategy::within::spherical_point_point::apply(point1, point2);
}
};
struct spherical_segments_calc_policy
{
template <typename Point, typename Point3d>
static Point from_cart3d(Point3d const& point_3d)
{
return formula::cart3d_to_sph<Point>(point_3d);
}
template <typename Point3d, typename Point>
static Point3d to_cart3d(Point const& point)
{
return formula::sph_to_cart3d<Point3d>(point);
}
template <typename Point3d>
struct plane
{
typedef typename coordinate_type<Point3d>::type coord_t;
// not normalized
plane(Point3d const& p1, Point3d const& p2)
: normal(cross_product(p1, p2))
{}
int side_value(Point3d const& pt) const
{
return formula::sph_side_value(normal, pt);
}
static coord_t cos_angle_between(Point3d const& p1, Point3d const& p2)
{
return dot_product(p1, p2);
}
coord_t cos_angle_between(Point3d const& p1, Point3d const& p2, bool & is_forward) const
{
coord_t const c0 = 0;
is_forward = dot_product(normal, cross_product(p1, p2)) >= c0;
return dot_product(p1, p2);
}
Point3d normal;
};
template <typename Point3d>
static plane<Point3d> get_plane(Point3d const& p1, Point3d const& p2)
{
return plane<Point3d>(p1, p2);
}
template <typename Point3d>
static bool intersection_points(plane<Point3d> const& plane1,
plane<Point3d> const& plane2,
Point3d & ip1, Point3d & ip2)
{
typedef typename coordinate_type<Point3d>::type coord_t;
ip1 = cross_product(plane1.normal, plane2.normal);
// NOTE: the length should be greater than 0 at this point
// if the normals were not normalized and their dot product
// not checked before this function is called the length
// should be checked here (math::equals(len, c0))
coord_t const len = math::sqrt(dot_product(ip1, ip1));
geometry::detail::for_each_dimension<Point3d>([&](auto index)
{
coord_t const coord = get<index>(ip1) / len; // normalize
set<index>(ip1, coord);
set<index>(ip2, -coord);
});
return true;
}
};
template
<
typename CalculationType = void
>
struct spherical_segments
: ecef_segments
<
spherical_segments_calc_policy,
CalculationType
>
{};
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace services
{
/*template <typename CalculationType>
struct default_strategy<spherical_polar_tag, CalculationType>
{
typedef spherical_segments<CalculationType> type;
};*/
template <typename CalculationType>
struct default_strategy<spherical_equatorial_tag, CalculationType>
{
typedef spherical_segments<CalculationType> type;
};
template <typename CalculationType>
struct default_strategy<geographic_tag, CalculationType>
{
// NOTE: Spherical strategy returns the same result as the geographic one
// representing segments as great elliptic arcs. If the elliptic arcs are
// not great elliptic arcs (the origin not in the center of the coordinate
// system) then there may be problems with consistency of the side and
// intersection strategies.
typedef spherical_segments<CalculationType> type;
};
} // namespace services
#endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
}} // namespace strategy::intersection
namespace strategy
{
namespace within { namespace services
{
template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, linear_tag, spherical_tag, spherical_tag>
{
typedef strategy::intersection::spherical_segments<> type;
};
template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, polygonal_tag, spherical_tag, spherical_tag>
{
typedef strategy::intersection::spherical_segments<> type;
};
template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, linear_tag, spherical_tag, spherical_tag>
{
typedef strategy::intersection::spherical_segments<> type;
};
template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, polygonal_tag, spherical_tag, spherical_tag>
{
typedef strategy::intersection::spherical_segments<> type;
};
}} // within::services
namespace covered_by { namespace services
{
template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, linear_tag, spherical_tag, spherical_tag>
{
typedef strategy::intersection::spherical_segments<> type;
};
template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, polygonal_tag, spherical_tag, spherical_tag>
{
typedef strategy::intersection::spherical_segments<> type;
};
template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, linear_tag, spherical_tag, spherical_tag>
{
typedef strategy::intersection::spherical_segments<> type;
};
template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, polygonal_tag, spherical_tag, spherical_tag>
{
typedef strategy::intersection::spherical_segments<> type;
};
}} // within::services
} // strategy
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP