libcarla/include/system/boost/geometry/strategies/geographic/intersection.hpp
2024-10-18 13:19:59 +08:00

890 lines
34 KiB
C++

// Boost.Geometry
// Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.
// Copyright (c) 2016-2021, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
#define BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
#include <algorithm>
#include <type_traits>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/radian_access.hpp>
#include <boost/geometry/core/tags.hpp>
#include <boost/geometry/algorithms/detail/assign_values.hpp>
#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
#include <boost/geometry/algorithms/detail/recalculate.hpp>
#include <boost/geometry/formulas/andoyer_inverse.hpp>
#include <boost/geometry/formulas/sjoberg_intersection.hpp>
#include <boost/geometry/formulas/spherical.hpp>
#include <boost/geometry/formulas/unit_spheroid.hpp>
#include <boost/geometry/geometries/concepts/point_concept.hpp>
#include <boost/geometry/geometries/concepts/segment_concept.hpp>
#include <boost/geometry/geometries/segment.hpp>
#include <boost/geometry/policies/robustness/segment_ratio.hpp>
#include <boost/geometry/srs/spheroid.hpp>
#include <boost/geometry/strategy/geographic/area.hpp>
#include <boost/geometry/strategy/geographic/envelope.hpp>
#include <boost/geometry/strategy/geographic/expand_segment.hpp>
#include <boost/geometry/strategy/spherical/expand_box.hpp>
#include <boost/geometry/strategies/geographic/disjoint_segment_box.hpp>
#include <boost/geometry/strategies/geographic/distance.hpp>
#include <boost/geometry/strategies/geographic/parameters.hpp>
#include <boost/geometry/strategies/geographic/point_in_poly_winding.hpp>
#include <boost/geometry/strategies/geographic/side.hpp>
#include <boost/geometry/strategies/spherical/disjoint_box_box.hpp>
#include <boost/geometry/strategies/spherical/point_in_point.hpp>
#include <boost/geometry/strategies/intersection.hpp>
#include <boost/geometry/strategies/intersection_result.hpp>
#include <boost/geometry/strategies/side_info.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace intersection
{
// CONSIDER: Improvement of the robustness/accuracy/repeatability by
// moving all segments to 0 longitude
// picking latitudes closer to 0
// etc.
template
<
typename FormulaPolicy = strategy::andoyer,
std::size_t Order = strategy::default_order<FormulaPolicy>::value,
typename Spheroid = srs::spheroid<double>,
typename CalculationType = void
>
struct geographic_segments
{
typedef geographic_tag cs_tag;
enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };
template <typename CoordinateType, typename SegmentRatio>
struct segment_intersection_info
{
template <typename Point, typename Segment1, typename Segment2>
void calculate(Point& point, Segment1 const& a, Segment2 const& b) const
{
if (ip_flag == ipi_inters)
{
// TODO: assign the rest of coordinates
set_from_radian<0>(point, lon);
set_from_radian<1>(point, lat);
}
else if (ip_flag == ipi_at_a1)
{
detail::assign_point_from_index<0>(a, point);
}
else if (ip_flag == ipi_at_a2)
{
detail::assign_point_from_index<1>(a, point);
}
else if (ip_flag == ipi_at_b1)
{
detail::assign_point_from_index<0>(b, point);
}
else // ip_flag == ipi_at_b2
{
detail::assign_point_from_index<1>(b, point);
}
}
CoordinateType lon;
CoordinateType lat;
SegmentRatio robust_ra;
SegmentRatio robust_rb;
intersection_point_flag ip_flag;
};
explicit geographic_segments(Spheroid const& spheroid = Spheroid())
: m_spheroid(spheroid)
{}
Spheroid model() const
{
return m_spheroid;
}
// Relate segments a and b
template
<
typename UniqueSubRange1,
typename UniqueSubRange2,
typename Policy
>
inline typename Policy::return_type apply(UniqueSubRange1 const& range_p,
UniqueSubRange2 const& range_q,
Policy const&) const
{
typedef typename UniqueSubRange1::point_type point1_type;
typedef typename UniqueSubRange2::point_type point2_type;
typedef model::referring_segment<point1_type const> segment_type1;
typedef model::referring_segment<point2_type const> segment_type2;
BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point1_type>) );
BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point2_type>) );
/*
typename coordinate_type<Point1>::type
const a1_lon = get<0>(a1),
const a2_lon = get<0>(a2);
typename coordinate_type<Point2>::type
const b1_lon = get<0>(b1),
const b2_lon = get<0>(b2);
bool is_a_reversed = a1_lon > a2_lon || a1_lon == a2_lon && get<1>(a1) > get<1>(a2);
bool is_b_reversed = b1_lon > b2_lon || b1_lon == b2_lon && get<1>(b1) > get<1>(b2);
*/
point1_type const& p0 = range_p.at(0);
point1_type const& p1 = range_p.at(1);
point2_type const& q0 = range_q.at(0);
point2_type const& q1 = range_q.at(1);
bool const is_p_reversed = get<1>(p0) > get<1>(p1);
bool const is_q_reversed = get<1>(q0) > get<1>(q1);
// Call apply with original segments and ordered points
return apply<Policy>(segment_type1(p0, p1),
segment_type2(q0, q1),
(is_p_reversed ? p1 : p0),
(is_p_reversed ? p0 : p1),
(is_q_reversed ? q1 : q0),
(is_q_reversed ? q0 : q1),
is_p_reversed, is_q_reversed);
}
private:
// Relate segments a and b
template
<
typename Policy,
typename Segment1,
typename Segment2,
typename Point1,
typename Point2
>
inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b,
Point1 const& a1, Point1 const& a2,
Point2 const& b1, Point2 const& b2,
bool is_a_reversed, bool is_b_reversed) const
{
BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment1>) );
BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment2>) );
typedef typename select_calculation_type
<Segment1, Segment2, CalculationType>::type calc_t;
typedef srs::spheroid<calc_t> spheroid_type;
static const calc_t c0 = 0;
// normalized spheroid
spheroid_type spheroid = formula::unit_spheroid<spheroid_type>(m_spheroid);
// TODO: check only 2 first coordinates here?
bool a_is_point = equals_point_point(a1, a2);
bool b_is_point = equals_point_point(b1, b2);
if(a_is_point && b_is_point)
{
return equals_point_point(a1, b2)
? Policy::degenerate(a, true)
: Policy::disjoint()
;
}
calc_t const a1_lon = get_as_radian<0>(a1);
calc_t const a1_lat = get_as_radian<1>(a1);
calc_t const a2_lon = get_as_radian<0>(a2);
calc_t const a2_lat = get_as_radian<1>(a2);
calc_t const b1_lon = get_as_radian<0>(b1);
calc_t const b1_lat = get_as_radian<1>(b1);
calc_t const b2_lon = get_as_radian<0>(b2);
calc_t const b2_lat = get_as_radian<1>(b2);
side_info sides;
// NOTE: potential optimization, don't calculate distance at this point
// this would require to reimplement inverse strategy to allow
// calculation of distance if needed, probably also storing intermediate
// results somehow inside an object.
typedef typename FormulaPolicy::template inverse<calc_t, true, true, false, false, false> inverse_dist_azi;
typedef typename inverse_dist_azi::result_type inverse_result;
// TODO: no need to call inverse formula if we know that the points are equal
// distance can be set to 0 in this case and azimuth may be not calculated
bool is_equal_a1_b1 = equals_point_point(a1, b1);
bool is_equal_a2_b1 = equals_point_point(a2, b1);
bool degen_neq_coords = false;
inverse_result res_b1_b2, res_b1_a1, res_b1_a2;
if (! b_is_point)
{
res_b1_b2 = inverse_dist_azi::apply(b1_lon, b1_lat, b2_lon, b2_lat, spheroid);
if (math::equals(res_b1_b2.distance, c0))
{
b_is_point = true;
degen_neq_coords = true;
}
else
{
res_b1_a1 = inverse_dist_azi::apply(b1_lon, b1_lat, a1_lon, a1_lat, spheroid);
if (math::equals(res_b1_a1.distance, c0))
{
is_equal_a1_b1 = true;
}
res_b1_a2 = inverse_dist_azi::apply(b1_lon, b1_lat, a2_lon, a2_lat, spheroid);
if (math::equals(res_b1_a2.distance, c0))
{
is_equal_a2_b1 = true;
}
sides.set<0>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_b1_a1.azimuth, res_b1_b2.azimuth),
is_equal_a2_b1 ? 0 : formula::azimuth_side_value(res_b1_a2.azimuth, res_b1_b2.azimuth));
if (sides.same<0>())
{
// Both points are at the same side of other segment, we can leave
return Policy::disjoint();
}
}
}
bool is_equal_a1_b2 = equals_point_point(a1, b2);
inverse_result res_a1_a2, res_a1_b1, res_a1_b2;
if (! a_is_point)
{
res_a1_a2 = inverse_dist_azi::apply(a1_lon, a1_lat, a2_lon, a2_lat, spheroid);
if (math::equals(res_a1_a2.distance, c0))
{
a_is_point = true;
degen_neq_coords = true;
}
else
{
res_a1_b1 = inverse_dist_azi::apply(a1_lon, a1_lat, b1_lon, b1_lat, spheroid);
if (math::equals(res_a1_b1.distance, c0))
{
is_equal_a1_b1 = true;
}
res_a1_b2 = inverse_dist_azi::apply(a1_lon, a1_lat, b2_lon, b2_lat, spheroid);
if (math::equals(res_a1_b2.distance, c0))
{
is_equal_a1_b2 = true;
}
sides.set<1>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_a1_b1.azimuth, res_a1_a2.azimuth),
is_equal_a1_b2 ? 0 : formula::azimuth_side_value(res_a1_b2.azimuth, res_a1_a2.azimuth));
if (sides.same<1>())
{
// Both points are at the same side of other segment, we can leave
return Policy::disjoint();
}
}
}
if(a_is_point && b_is_point)
{
return is_equal_a1_b2
? Policy::degenerate(a, true)
: Policy::disjoint()
;
}
// NOTE: at this point the segments may still be disjoint
// NOTE: at this point one of the segments may be degenerated
bool collinear = sides.collinear();
if (! collinear)
{
// WARNING: the side strategy doesn't have the info about the other
// segment so it may return results inconsistent with this intersection
// strategy, as it checks both segments for consistency
if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0)
{
collinear = true;
sides.set<1>(0, 0);
}
else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0)
{
collinear = true;
sides.set<0>(0, 0);
}
}
if (collinear)
{
if (a_is_point)
{
return collinear_one_degenerated<Policy, calc_t>(a, true, b1, b2, a1, a2, res_b1_b2, res_b1_a1, res_b1_a2, is_b_reversed, degen_neq_coords);
}
else if (b_is_point)
{
return collinear_one_degenerated<Policy, calc_t>(b, false, a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, is_a_reversed, degen_neq_coords);
}
else
{
calc_t dist_a1_a2, dist_a1_b1, dist_a1_b2;
calc_t dist_b1_b2, dist_b1_a1, dist_b1_a2;
// use shorter segment
if (res_a1_a2.distance <= res_b1_b2.distance)
{
calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, dist_a1_a2, dist_a1_b1);
calculate_collinear_data(a1, a2, b2, b1, res_a1_a2, res_a1_b2, res_a1_b1, dist_a1_a2, dist_a1_b2);
dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
dist_b1_a1 = -dist_a1_b1;
dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
}
else
{
calculate_collinear_data(b1, b2, a1, a2, res_b1_b2, res_b1_a1, res_b1_a2, dist_b1_b2, dist_b1_a1);
calculate_collinear_data(b1, b2, a2, a1, res_b1_b2, res_b1_a2, res_b1_a1, dist_b1_b2, dist_b1_a2);
dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
dist_a1_b1 = -dist_b1_a1;
dist_a1_b2 = dist_b1_b2 - dist_b1_a1;
}
// NOTE: this is probably not needed
int a1_on_b = position_value(c0, dist_a1_b1, dist_a1_b2);
int a2_on_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
int b1_on_a = position_value(c0, dist_b1_a1, dist_b1_a2);
int b2_on_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);
if ((a1_on_b < 1 && a2_on_b < 1) || (a1_on_b > 3 && a2_on_b > 3))
{
return Policy::disjoint();
}
if (a1_on_b == 1)
{
dist_b1_a1 = 0;
dist_a1_b1 = 0;
}
else if (a1_on_b == 3)
{
dist_b1_a1 = dist_b1_b2;
dist_a1_b2 = 0;
}
if (a2_on_b == 1)
{
dist_b1_a2 = 0;
dist_a1_b1 = dist_a1_a2;
}
else if (a2_on_b == 3)
{
dist_b1_a2 = dist_b1_b2;
dist_a1_b2 = dist_a1_a2;
}
bool opposite = ! same_direction(res_a1_a2.azimuth, res_b1_b2.azimuth);
// NOTE: If segment was reversed opposite, positions and segment ratios has to be altered
if (is_a_reversed)
{
// opposite
opposite = ! opposite;
// positions
std::swap(a1_on_b, a2_on_b);
b1_on_a = 4 - b1_on_a;
b2_on_a = 4 - b2_on_a;
// distances for ratios
std::swap(dist_b1_a1, dist_b1_a2);
dist_a1_b1 = dist_a1_a2 - dist_a1_b1;
dist_a1_b2 = dist_a1_a2 - dist_a1_b2;
}
if (is_b_reversed)
{
// opposite
opposite = ! opposite;
// positions
a1_on_b = 4 - a1_on_b;
a2_on_b = 4 - a2_on_b;
std::swap(b1_on_a, b2_on_a);
// distances for ratios
dist_b1_a1 = dist_b1_b2 - dist_b1_a1;
dist_b1_a2 = dist_b1_b2 - dist_b1_a2;
std::swap(dist_a1_b1, dist_a1_b2);
}
segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);
return Policy::segments_collinear(a, b, opposite,
a1_on_b, a2_on_b, b1_on_a, b2_on_a,
ra_from, ra_to, rb_from, rb_to);
}
}
else // crossing or touching
{
if (a_is_point || b_is_point)
{
return Policy::disjoint();
}
calc_t lon = 0, lat = 0;
intersection_point_flag ip_flag;
calc_t dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1;
if (calculate_ip_data(a1, a2, b1, b2,
a1_lon, a1_lat, a2_lon, a2_lat,
b1_lon, b1_lat, b2_lon, b2_lat,
res_a1_a2, res_a1_b1, res_a1_b2,
res_b1_b2, res_b1_a1, res_b1_a2,
sides, spheroid,
lon, lat,
dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1,
ip_flag))
{
// NOTE: If segment was reversed sides and segment ratios has to be altered
if (is_a_reversed)
{
// sides
sides_reverse_segment<0>(sides);
// distance for ratio
dist_a1_i1 = dist_a1_a2 - dist_a1_i1;
// ip flag
ip_flag_reverse_segment(ip_flag, ipi_at_a1, ipi_at_a2);
}
if (is_b_reversed)
{
// sides
sides_reverse_segment<1>(sides);
// distance for ratio
dist_b1_i1 = dist_b1_b2 - dist_b1_i1;
// ip flag
ip_flag_reverse_segment(ip_flag, ipi_at_b1, ipi_at_b2);
}
// intersects
segment_intersection_info
<
calc_t,
segment_ratio<calc_t>
> sinfo;
sinfo.lon = lon;
sinfo.lat = lat;
sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
sinfo.ip_flag = ip_flag;
return Policy::segments_crosses(sides, sinfo, a, b);
}
else
{
return Policy::disjoint();
}
}
}
template <typename Policy, typename CalcT, typename Segment, typename Point1, typename Point2, typename ResultInverse>
static inline typename Policy::return_type
collinear_one_degenerated(Segment const& segment, bool degenerated_a,
Point1 const& a1, Point1 const& a2,
Point2 const& b1, Point2 const& b2,
ResultInverse const& res_a1_a2,
ResultInverse const& res_a1_b1,
ResultInverse const& res_a1_b2,
bool is_other_reversed,
bool degen_neq_coords)
{
CalcT dist_1_2, dist_1_o;
if (! calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, dist_1_2, dist_1_o, degen_neq_coords))
{
return Policy::disjoint();
}
// NOTE: If segment was reversed segment ratio has to be altered
if (is_other_reversed)
{
// distance for ratio
dist_1_o = dist_1_2 - dist_1_o;
}
return Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
}
// TODO: instead of checks below test bi against a1 and a2 here?
// in order to make this independent from is_near()
template <typename Point1, typename Point2, typename ResultInverse, typename CalcT>
static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in
Point2 const& b1, Point2 const& /*b2*/, // in
ResultInverse const& res_a1_a2, // in
ResultInverse const& res_a1_b1, // in
ResultInverse const& res_a1_b2, // in
CalcT& dist_a1_a2, // out
CalcT& dist_a1_b1, // out
bool degen_neq_coords = false) // in
{
dist_a1_a2 = res_a1_a2.distance;
dist_a1_b1 = res_a1_b1.distance;
if (! same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth))
{
dist_a1_b1 = -dist_a1_b1;
}
// if b1 is close a1
if (is_endpoint_equal(dist_a1_b1, a1, b1))
{
dist_a1_b1 = 0;
return true;
}
// if b1 is close a2
else if (is_endpoint_equal(dist_a1_a2 - dist_a1_b1, a2, b1))
{
dist_a1_b1 = dist_a1_a2;
return true;
}
// check the other endpoint of degenerated segment near a pole
if (degen_neq_coords)
{
static CalcT const c0 = 0;
if (math::equals(res_a1_b2.distance, c0))
{
dist_a1_b1 = 0;
return true;
}
else if (math::equals(dist_a1_a2 - res_a1_b2.distance, c0))
{
dist_a1_b1 = dist_a1_a2;
return true;
}
}
// or i1 is on b
return segment_ratio<CalcT>(dist_a1_b1, dist_a1_a2).on_segment();
}
template <typename Point1, typename Point2, typename CalcT, typename ResultInverse, typename Spheroid_>
static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in
Point2 const& b1, Point2 const& b2, // in
CalcT const& a1_lon, CalcT const& a1_lat, // in
CalcT const& a2_lon, CalcT const& a2_lat, // in
CalcT const& b1_lon, CalcT const& b1_lat, // in
CalcT const& b2_lon, CalcT const& b2_lat, // in
ResultInverse const& res_a1_a2, // in
ResultInverse const& res_a1_b1, // in
ResultInverse const& res_a1_b2, // in
ResultInverse const& res_b1_b2, // in
ResultInverse const& res_b1_a1, // in
ResultInverse const& res_b1_a2, // in
side_info const& sides, // in
Spheroid_ const& spheroid, // in
CalcT & lon, CalcT & lat, // out
CalcT& dist_a1_a2, CalcT& dist_a1_ip, // out
CalcT& dist_b1_b2, CalcT& dist_b1_ip, // out
intersection_point_flag& ip_flag) // out
{
dist_a1_a2 = res_a1_a2.distance;
dist_b1_b2 = res_b1_b2.distance;
// assign the IP if some endpoints overlap
if (equals_point_point(a1, b1))
{
lon = a1_lon;
lat = a1_lat;
dist_a1_ip = 0;
dist_b1_ip = 0;
ip_flag = ipi_at_a1;
return true;
}
else if (equals_point_point(a1, b2))
{
lon = a1_lon;
lat = a1_lat;
dist_a1_ip = 0;
dist_b1_ip = dist_b1_b2;
ip_flag = ipi_at_a1;
return true;
}
else if (equals_point_point(a2, b1))
{
lon = a2_lon;
lat = a2_lat;
dist_a1_ip = dist_a1_a2;
dist_b1_ip = 0;
ip_flag = ipi_at_a2;
return true;
}
else if (equals_point_point(a2, b2))
{
lon = a2_lon;
lat = a2_lat;
dist_a1_ip = dist_a1_a2;
dist_b1_ip = dist_b1_b2;
ip_flag = ipi_at_a2;
return true;
}
// at this point we know that the endpoints doesn't overlap
// check cases when an endpoint lies on the other geodesic
if (sides.template get<0, 0>() == 0) // a1 wrt b
{
if (res_b1_a1.distance <= res_b1_b2.distance
&& same_direction(res_b1_a1.azimuth, res_b1_b2.azimuth))
{
lon = a1_lon;
lat = a1_lat;
dist_a1_ip = 0;
dist_b1_ip = res_b1_a1.distance;
ip_flag = ipi_at_a1;
return true;
}
else
{
return false;
}
}
else if (sides.template get<0, 1>() == 0) // a2 wrt b
{
if (res_b1_a2.distance <= res_b1_b2.distance
&& same_direction(res_b1_a2.azimuth, res_b1_b2.azimuth))
{
lon = a2_lon;
lat = a2_lat;
dist_a1_ip = res_a1_a2.distance;
dist_b1_ip = res_b1_a2.distance;
ip_flag = ipi_at_a2;
return true;
}
else
{
return false;
}
}
else if (sides.template get<1, 0>() == 0) // b1 wrt a
{
if (res_a1_b1.distance <= res_a1_a2.distance
&& same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth))
{
lon = b1_lon;
lat = b1_lat;
dist_a1_ip = res_a1_b1.distance;
dist_b1_ip = 0;
ip_flag = ipi_at_b1;
return true;
}
else
{
return false;
}
}
else if (sides.template get<1, 1>() == 0) // b2 wrt a
{
if (res_a1_b2.distance <= res_a1_a2.distance
&& same_direction(res_a1_b2.azimuth, res_a1_a2.azimuth))
{
lon = b2_lon;
lat = b2_lat;
dist_a1_ip = res_a1_b2.distance;
dist_b1_ip = res_b1_b2.distance;
ip_flag = ipi_at_b2;
return true;
}
else
{
return false;
}
}
// At this point neither the endpoints overlaps
// nor any andpoint lies on the other geodesic
// So the endpoints should lie on the opposite sides of both geodesics
bool const ok = formula::sjoberg_intersection<CalcT, FormulaPolicy::template inverse, Order>
::apply(a1_lon, a1_lat, a2_lon, a2_lat, res_a1_a2.azimuth,
b1_lon, b1_lat, b2_lon, b2_lat, res_b1_b2.azimuth,
lon, lat, spheroid);
if (! ok)
{
return false;
}
typedef typename FormulaPolicy::template inverse<CalcT, true, true, false, false, false> inverse_dist_azi;
typedef typename inverse_dist_azi::result_type inverse_result;
inverse_result const res_a1_ip = inverse_dist_azi::apply(a1_lon, a1_lat, lon, lat, spheroid);
dist_a1_ip = res_a1_ip.distance;
if (! same_direction(res_a1_ip.azimuth, res_a1_a2.azimuth))
{
dist_a1_ip = -dist_a1_ip;
}
bool is_on_a = segment_ratio<CalcT>(dist_a1_ip, dist_a1_a2).on_segment();
// NOTE: not fully consistent with equals_point_point() since radians are always used.
bool is_on_a1 = math::equals(lon, a1_lon) && math::equals(lat, a1_lat);
bool is_on_a2 = math::equals(lon, a2_lon) && math::equals(lat, a2_lat);
if (! (is_on_a || is_on_a1 || is_on_a2))
{
return false;
}
inverse_result const res_b1_ip = inverse_dist_azi::apply(b1_lon, b1_lat, lon, lat, spheroid);
dist_b1_ip = res_b1_ip.distance;
if (! same_direction(res_b1_ip.azimuth, res_b1_b2.azimuth))
{
dist_b1_ip = -dist_b1_ip;
}
bool is_on_b = segment_ratio<CalcT>(dist_b1_ip, dist_b1_b2).on_segment();
// NOTE: not fully consistent with equals_point_point() since radians are always used.
bool is_on_b1 = math::equals(lon, b1_lon) && math::equals(lat, b1_lat);
bool is_on_b2 = math::equals(lon, b2_lon) && math::equals(lat, b2_lat);
if (! (is_on_b || is_on_b1 || is_on_b2))
{
return false;
}
typedef typename FormulaPolicy::template inverse<CalcT, true, false, false, false, false> inverse_dist;
ip_flag = ipi_inters;
if (is_on_b1)
{
lon = b1_lon;
lat = b1_lat;
dist_a1_ip = inverse_dist::apply(a1_lon, a1_lat, lon, lat, spheroid).distance; // for consistency
dist_b1_ip = 0;
ip_flag = ipi_at_b1;
}
else if (is_on_b2)
{
lon = b2_lon;
lat = b2_lat;
dist_a1_ip = inverse_dist::apply(a1_lon, a1_lat, lon, lat, spheroid).distance; // for consistency
dist_b1_ip = res_b1_b2.distance;
ip_flag = ipi_at_b2;
}
if (is_on_a1)
{
lon = a1_lon;
lat = a1_lat;
dist_a1_ip = 0;
dist_b1_ip = inverse_dist::apply(b1_lon, b1_lat, lon, lat, spheroid).distance; // for consistency
ip_flag = ipi_at_a1;
}
else if (is_on_a2)
{
lon = a2_lon;
lat = a2_lat;
dist_a1_ip = res_a1_a2.distance;
dist_b1_ip = inverse_dist::apply(b1_lon, b1_lat, lon, lat, spheroid).distance; // for consistency
ip_flag = ipi_at_a2;
}
return true;
}
template <typename CalcT, typename P1, typename P2>
static inline bool is_endpoint_equal(CalcT const& dist,
P1 const& ai, P2 const& b1)
{
static CalcT const c0 = 0;
return is_near(dist) && (math::equals(dist, c0) || equals_point_point(ai, b1));
}
template <typename CalcT>
static inline bool is_near(CalcT const& dist)
{
// NOTE: This strongly depends on the Inverse method
CalcT const small_number = CalcT(std::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
return math::abs(dist) <= small_number;
}
template <typename ProjCoord1, typename ProjCoord2>
static inline int position_value(ProjCoord1 const& ca1,
ProjCoord2 const& cb1,
ProjCoord2 const& cb2)
{
// S1x 0 1 2 3 4
// S2 |---------->
return math::equals(ca1, cb1) ? 1
: math::equals(ca1, cb2) ? 3
: cb1 < cb2 ?
( ca1 < cb1 ? 0
: ca1 > cb2 ? 4
: 2 )
: ( ca1 > cb1 ? 0
: ca1 < cb2 ? 4
: 2 );
}
template <typename CalcT>
static inline bool same_direction(CalcT const& azimuth1, CalcT const& azimuth2)
{
// distance between two angles normalized to (-180, 180]
CalcT const angle_diff = math::longitude_distance_signed<radian>(azimuth1, azimuth2);
return math::abs(angle_diff) <= math::half_pi<CalcT>();
}
template <int Which>
static inline void sides_reverse_segment(side_info & sides)
{
// names assuming segment A is reversed (Which == 0)
int a1_wrt_b = sides.template get<Which, 0>();
int a2_wrt_b = sides.template get<Which, 1>();
std::swap(a1_wrt_b, a2_wrt_b);
sides.template set<Which>(a1_wrt_b, a2_wrt_b);
int b1_wrt_a = sides.template get<1 - Which, 0>();
int b2_wrt_a = sides.template get<1 - Which, 1>();
sides.template set<1 - Which>(-b1_wrt_a, -b2_wrt_a);
}
static inline void ip_flag_reverse_segment(intersection_point_flag & ip_flag,
intersection_point_flag const& ipi_at_p1,
intersection_point_flag const& ipi_at_p2)
{
ip_flag = ip_flag == ipi_at_p1 ? ipi_at_p2 :
ip_flag == ipi_at_p2 ? ipi_at_p1 :
ip_flag;
}
template <typename Point1, typename Point2>
static inline bool equals_point_point(Point1 const& point1, Point2 const& point2)
{
return strategy::within::spherical_point_point::apply(point1, point2);
}
private:
Spheroid m_spheroid;
};
}} // namespace strategy::intersection
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP