890 lines
34 KiB
C++
890 lines
34 KiB
C++
// Boost.Geometry
|
|
|
|
// Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.
|
|
|
|
// Copyright (c) 2016-2021, Oracle and/or its affiliates.
|
|
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
|
|
|
|
// Use, modification and distribution is subject to the Boost Software License,
|
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
|
|
#define BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
|
|
|
|
#include <algorithm>
|
|
#include <type_traits>
|
|
|
|
#include <boost/geometry/core/cs.hpp>
|
|
#include <boost/geometry/core/access.hpp>
|
|
#include <boost/geometry/core/radian_access.hpp>
|
|
#include <boost/geometry/core/tags.hpp>
|
|
|
|
#include <boost/geometry/algorithms/detail/assign_values.hpp>
|
|
#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
|
|
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
|
|
#include <boost/geometry/algorithms/detail/recalculate.hpp>
|
|
|
|
#include <boost/geometry/formulas/andoyer_inverse.hpp>
|
|
#include <boost/geometry/formulas/sjoberg_intersection.hpp>
|
|
#include <boost/geometry/formulas/spherical.hpp>
|
|
#include <boost/geometry/formulas/unit_spheroid.hpp>
|
|
|
|
#include <boost/geometry/geometries/concepts/point_concept.hpp>
|
|
#include <boost/geometry/geometries/concepts/segment_concept.hpp>
|
|
#include <boost/geometry/geometries/segment.hpp>
|
|
|
|
#include <boost/geometry/policies/robustness/segment_ratio.hpp>
|
|
|
|
#include <boost/geometry/srs/spheroid.hpp>
|
|
|
|
#include <boost/geometry/strategy/geographic/area.hpp>
|
|
#include <boost/geometry/strategy/geographic/envelope.hpp>
|
|
#include <boost/geometry/strategy/geographic/expand_segment.hpp>
|
|
#include <boost/geometry/strategy/spherical/expand_box.hpp>
|
|
|
|
#include <boost/geometry/strategies/geographic/disjoint_segment_box.hpp>
|
|
#include <boost/geometry/strategies/geographic/distance.hpp>
|
|
#include <boost/geometry/strategies/geographic/parameters.hpp>
|
|
#include <boost/geometry/strategies/geographic/point_in_poly_winding.hpp>
|
|
#include <boost/geometry/strategies/geographic/side.hpp>
|
|
#include <boost/geometry/strategies/spherical/disjoint_box_box.hpp>
|
|
#include <boost/geometry/strategies/spherical/point_in_point.hpp>
|
|
#include <boost/geometry/strategies/intersection.hpp>
|
|
#include <boost/geometry/strategies/intersection_result.hpp>
|
|
#include <boost/geometry/strategies/side_info.hpp>
|
|
|
|
#include <boost/geometry/util/math.hpp>
|
|
#include <boost/geometry/util/select_calculation_type.hpp>
|
|
|
|
|
|
namespace boost { namespace geometry
|
|
{
|
|
|
|
namespace strategy { namespace intersection
|
|
{
|
|
|
|
// CONSIDER: Improvement of the robustness/accuracy/repeatability by
|
|
// moving all segments to 0 longitude
|
|
// picking latitudes closer to 0
|
|
// etc.
|
|
|
|
template
|
|
<
|
|
typename FormulaPolicy = strategy::andoyer,
|
|
std::size_t Order = strategy::default_order<FormulaPolicy>::value,
|
|
typename Spheroid = srs::spheroid<double>,
|
|
typename CalculationType = void
|
|
>
|
|
struct geographic_segments
|
|
{
|
|
typedef geographic_tag cs_tag;
|
|
|
|
enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };
|
|
|
|
template <typename CoordinateType, typename SegmentRatio>
|
|
struct segment_intersection_info
|
|
{
|
|
template <typename Point, typename Segment1, typename Segment2>
|
|
void calculate(Point& point, Segment1 const& a, Segment2 const& b) const
|
|
{
|
|
if (ip_flag == ipi_inters)
|
|
{
|
|
// TODO: assign the rest of coordinates
|
|
set_from_radian<0>(point, lon);
|
|
set_from_radian<1>(point, lat);
|
|
}
|
|
else if (ip_flag == ipi_at_a1)
|
|
{
|
|
detail::assign_point_from_index<0>(a, point);
|
|
}
|
|
else if (ip_flag == ipi_at_a2)
|
|
{
|
|
detail::assign_point_from_index<1>(a, point);
|
|
}
|
|
else if (ip_flag == ipi_at_b1)
|
|
{
|
|
detail::assign_point_from_index<0>(b, point);
|
|
}
|
|
else // ip_flag == ipi_at_b2
|
|
{
|
|
detail::assign_point_from_index<1>(b, point);
|
|
}
|
|
}
|
|
|
|
CoordinateType lon;
|
|
CoordinateType lat;
|
|
SegmentRatio robust_ra;
|
|
SegmentRatio robust_rb;
|
|
intersection_point_flag ip_flag;
|
|
};
|
|
|
|
explicit geographic_segments(Spheroid const& spheroid = Spheroid())
|
|
: m_spheroid(spheroid)
|
|
{}
|
|
|
|
Spheroid model() const
|
|
{
|
|
return m_spheroid;
|
|
}
|
|
|
|
// Relate segments a and b
|
|
template
|
|
<
|
|
typename UniqueSubRange1,
|
|
typename UniqueSubRange2,
|
|
typename Policy
|
|
>
|
|
inline typename Policy::return_type apply(UniqueSubRange1 const& range_p,
|
|
UniqueSubRange2 const& range_q,
|
|
Policy const&) const
|
|
{
|
|
typedef typename UniqueSubRange1::point_type point1_type;
|
|
typedef typename UniqueSubRange2::point_type point2_type;
|
|
typedef model::referring_segment<point1_type const> segment_type1;
|
|
typedef model::referring_segment<point2_type const> segment_type2;
|
|
|
|
BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point1_type>) );
|
|
BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point2_type>) );
|
|
|
|
/*
|
|
typename coordinate_type<Point1>::type
|
|
const a1_lon = get<0>(a1),
|
|
const a2_lon = get<0>(a2);
|
|
typename coordinate_type<Point2>::type
|
|
const b1_lon = get<0>(b1),
|
|
const b2_lon = get<0>(b2);
|
|
bool is_a_reversed = a1_lon > a2_lon || a1_lon == a2_lon && get<1>(a1) > get<1>(a2);
|
|
bool is_b_reversed = b1_lon > b2_lon || b1_lon == b2_lon && get<1>(b1) > get<1>(b2);
|
|
*/
|
|
|
|
point1_type const& p0 = range_p.at(0);
|
|
point1_type const& p1 = range_p.at(1);
|
|
point2_type const& q0 = range_q.at(0);
|
|
point2_type const& q1 = range_q.at(1);
|
|
|
|
bool const is_p_reversed = get<1>(p0) > get<1>(p1);
|
|
bool const is_q_reversed = get<1>(q0) > get<1>(q1);
|
|
|
|
// Call apply with original segments and ordered points
|
|
return apply<Policy>(segment_type1(p0, p1),
|
|
segment_type2(q0, q1),
|
|
(is_p_reversed ? p1 : p0),
|
|
(is_p_reversed ? p0 : p1),
|
|
(is_q_reversed ? q1 : q0),
|
|
(is_q_reversed ? q0 : q1),
|
|
is_p_reversed, is_q_reversed);
|
|
}
|
|
|
|
private:
|
|
// Relate segments a and b
|
|
template
|
|
<
|
|
typename Policy,
|
|
typename Segment1,
|
|
typename Segment2,
|
|
typename Point1,
|
|
typename Point2
|
|
>
|
|
inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b,
|
|
Point1 const& a1, Point1 const& a2,
|
|
Point2 const& b1, Point2 const& b2,
|
|
bool is_a_reversed, bool is_b_reversed) const
|
|
{
|
|
BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment1>) );
|
|
BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment2>) );
|
|
|
|
typedef typename select_calculation_type
|
|
<Segment1, Segment2, CalculationType>::type calc_t;
|
|
|
|
typedef srs::spheroid<calc_t> spheroid_type;
|
|
|
|
static const calc_t c0 = 0;
|
|
|
|
// normalized spheroid
|
|
spheroid_type spheroid = formula::unit_spheroid<spheroid_type>(m_spheroid);
|
|
|
|
// TODO: check only 2 first coordinates here?
|
|
bool a_is_point = equals_point_point(a1, a2);
|
|
bool b_is_point = equals_point_point(b1, b2);
|
|
|
|
if(a_is_point && b_is_point)
|
|
{
|
|
return equals_point_point(a1, b2)
|
|
? Policy::degenerate(a, true)
|
|
: Policy::disjoint()
|
|
;
|
|
}
|
|
|
|
calc_t const a1_lon = get_as_radian<0>(a1);
|
|
calc_t const a1_lat = get_as_radian<1>(a1);
|
|
calc_t const a2_lon = get_as_radian<0>(a2);
|
|
calc_t const a2_lat = get_as_radian<1>(a2);
|
|
calc_t const b1_lon = get_as_radian<0>(b1);
|
|
calc_t const b1_lat = get_as_radian<1>(b1);
|
|
calc_t const b2_lon = get_as_radian<0>(b2);
|
|
calc_t const b2_lat = get_as_radian<1>(b2);
|
|
|
|
side_info sides;
|
|
|
|
// NOTE: potential optimization, don't calculate distance at this point
|
|
// this would require to reimplement inverse strategy to allow
|
|
// calculation of distance if needed, probably also storing intermediate
|
|
// results somehow inside an object.
|
|
typedef typename FormulaPolicy::template inverse<calc_t, true, true, false, false, false> inverse_dist_azi;
|
|
typedef typename inverse_dist_azi::result_type inverse_result;
|
|
|
|
// TODO: no need to call inverse formula if we know that the points are equal
|
|
// distance can be set to 0 in this case and azimuth may be not calculated
|
|
bool is_equal_a1_b1 = equals_point_point(a1, b1);
|
|
bool is_equal_a2_b1 = equals_point_point(a2, b1);
|
|
bool degen_neq_coords = false;
|
|
|
|
inverse_result res_b1_b2, res_b1_a1, res_b1_a2;
|
|
if (! b_is_point)
|
|
{
|
|
res_b1_b2 = inverse_dist_azi::apply(b1_lon, b1_lat, b2_lon, b2_lat, spheroid);
|
|
if (math::equals(res_b1_b2.distance, c0))
|
|
{
|
|
b_is_point = true;
|
|
degen_neq_coords = true;
|
|
}
|
|
else
|
|
{
|
|
res_b1_a1 = inverse_dist_azi::apply(b1_lon, b1_lat, a1_lon, a1_lat, spheroid);
|
|
if (math::equals(res_b1_a1.distance, c0))
|
|
{
|
|
is_equal_a1_b1 = true;
|
|
}
|
|
res_b1_a2 = inverse_dist_azi::apply(b1_lon, b1_lat, a2_lon, a2_lat, spheroid);
|
|
if (math::equals(res_b1_a2.distance, c0))
|
|
{
|
|
is_equal_a2_b1 = true;
|
|
}
|
|
sides.set<0>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_b1_a1.azimuth, res_b1_b2.azimuth),
|
|
is_equal_a2_b1 ? 0 : formula::azimuth_side_value(res_b1_a2.azimuth, res_b1_b2.azimuth));
|
|
if (sides.same<0>())
|
|
{
|
|
// Both points are at the same side of other segment, we can leave
|
|
return Policy::disjoint();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool is_equal_a1_b2 = equals_point_point(a1, b2);
|
|
|
|
inverse_result res_a1_a2, res_a1_b1, res_a1_b2;
|
|
if (! a_is_point)
|
|
{
|
|
res_a1_a2 = inverse_dist_azi::apply(a1_lon, a1_lat, a2_lon, a2_lat, spheroid);
|
|
if (math::equals(res_a1_a2.distance, c0))
|
|
{
|
|
a_is_point = true;
|
|
degen_neq_coords = true;
|
|
}
|
|
else
|
|
{
|
|
res_a1_b1 = inverse_dist_azi::apply(a1_lon, a1_lat, b1_lon, b1_lat, spheroid);
|
|
if (math::equals(res_a1_b1.distance, c0))
|
|
{
|
|
is_equal_a1_b1 = true;
|
|
}
|
|
res_a1_b2 = inverse_dist_azi::apply(a1_lon, a1_lat, b2_lon, b2_lat, spheroid);
|
|
if (math::equals(res_a1_b2.distance, c0))
|
|
{
|
|
is_equal_a1_b2 = true;
|
|
}
|
|
sides.set<1>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_a1_b1.azimuth, res_a1_a2.azimuth),
|
|
is_equal_a1_b2 ? 0 : formula::azimuth_side_value(res_a1_b2.azimuth, res_a1_a2.azimuth));
|
|
if (sides.same<1>())
|
|
{
|
|
// Both points are at the same side of other segment, we can leave
|
|
return Policy::disjoint();
|
|
}
|
|
}
|
|
}
|
|
|
|
if(a_is_point && b_is_point)
|
|
{
|
|
return is_equal_a1_b2
|
|
? Policy::degenerate(a, true)
|
|
: Policy::disjoint()
|
|
;
|
|
}
|
|
|
|
// NOTE: at this point the segments may still be disjoint
|
|
// NOTE: at this point one of the segments may be degenerated
|
|
|
|
bool collinear = sides.collinear();
|
|
|
|
if (! collinear)
|
|
{
|
|
// WARNING: the side strategy doesn't have the info about the other
|
|
// segment so it may return results inconsistent with this intersection
|
|
// strategy, as it checks both segments for consistency
|
|
|
|
if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0)
|
|
{
|
|
collinear = true;
|
|
sides.set<1>(0, 0);
|
|
}
|
|
else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0)
|
|
{
|
|
collinear = true;
|
|
sides.set<0>(0, 0);
|
|
}
|
|
}
|
|
|
|
if (collinear)
|
|
{
|
|
if (a_is_point)
|
|
{
|
|
return collinear_one_degenerated<Policy, calc_t>(a, true, b1, b2, a1, a2, res_b1_b2, res_b1_a1, res_b1_a2, is_b_reversed, degen_neq_coords);
|
|
}
|
|
else if (b_is_point)
|
|
{
|
|
return collinear_one_degenerated<Policy, calc_t>(b, false, a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, is_a_reversed, degen_neq_coords);
|
|
}
|
|
else
|
|
{
|
|
calc_t dist_a1_a2, dist_a1_b1, dist_a1_b2;
|
|
calc_t dist_b1_b2, dist_b1_a1, dist_b1_a2;
|
|
// use shorter segment
|
|
if (res_a1_a2.distance <= res_b1_b2.distance)
|
|
{
|
|
calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, dist_a1_a2, dist_a1_b1);
|
|
calculate_collinear_data(a1, a2, b2, b1, res_a1_a2, res_a1_b2, res_a1_b1, dist_a1_a2, dist_a1_b2);
|
|
dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
|
|
dist_b1_a1 = -dist_a1_b1;
|
|
dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
|
|
}
|
|
else
|
|
{
|
|
calculate_collinear_data(b1, b2, a1, a2, res_b1_b2, res_b1_a1, res_b1_a2, dist_b1_b2, dist_b1_a1);
|
|
calculate_collinear_data(b1, b2, a2, a1, res_b1_b2, res_b1_a2, res_b1_a1, dist_b1_b2, dist_b1_a2);
|
|
dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
|
|
dist_a1_b1 = -dist_b1_a1;
|
|
dist_a1_b2 = dist_b1_b2 - dist_b1_a1;
|
|
}
|
|
|
|
// NOTE: this is probably not needed
|
|
int a1_on_b = position_value(c0, dist_a1_b1, dist_a1_b2);
|
|
int a2_on_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
|
|
int b1_on_a = position_value(c0, dist_b1_a1, dist_b1_a2);
|
|
int b2_on_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);
|
|
|
|
if ((a1_on_b < 1 && a2_on_b < 1) || (a1_on_b > 3 && a2_on_b > 3))
|
|
{
|
|
return Policy::disjoint();
|
|
}
|
|
|
|
if (a1_on_b == 1)
|
|
{
|
|
dist_b1_a1 = 0;
|
|
dist_a1_b1 = 0;
|
|
}
|
|
else if (a1_on_b == 3)
|
|
{
|
|
dist_b1_a1 = dist_b1_b2;
|
|
dist_a1_b2 = 0;
|
|
}
|
|
|
|
if (a2_on_b == 1)
|
|
{
|
|
dist_b1_a2 = 0;
|
|
dist_a1_b1 = dist_a1_a2;
|
|
}
|
|
else if (a2_on_b == 3)
|
|
{
|
|
dist_b1_a2 = dist_b1_b2;
|
|
dist_a1_b2 = dist_a1_a2;
|
|
}
|
|
|
|
bool opposite = ! same_direction(res_a1_a2.azimuth, res_b1_b2.azimuth);
|
|
|
|
// NOTE: If segment was reversed opposite, positions and segment ratios has to be altered
|
|
if (is_a_reversed)
|
|
{
|
|
// opposite
|
|
opposite = ! opposite;
|
|
// positions
|
|
std::swap(a1_on_b, a2_on_b);
|
|
b1_on_a = 4 - b1_on_a;
|
|
b2_on_a = 4 - b2_on_a;
|
|
// distances for ratios
|
|
std::swap(dist_b1_a1, dist_b1_a2);
|
|
dist_a1_b1 = dist_a1_a2 - dist_a1_b1;
|
|
dist_a1_b2 = dist_a1_a2 - dist_a1_b2;
|
|
}
|
|
if (is_b_reversed)
|
|
{
|
|
// opposite
|
|
opposite = ! opposite;
|
|
// positions
|
|
a1_on_b = 4 - a1_on_b;
|
|
a2_on_b = 4 - a2_on_b;
|
|
std::swap(b1_on_a, b2_on_a);
|
|
// distances for ratios
|
|
dist_b1_a1 = dist_b1_b2 - dist_b1_a1;
|
|
dist_b1_a2 = dist_b1_b2 - dist_b1_a2;
|
|
std::swap(dist_a1_b1, dist_a1_b2);
|
|
}
|
|
|
|
segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
|
|
segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
|
|
segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
|
|
segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);
|
|
|
|
return Policy::segments_collinear(a, b, opposite,
|
|
a1_on_b, a2_on_b, b1_on_a, b2_on_a,
|
|
ra_from, ra_to, rb_from, rb_to);
|
|
}
|
|
}
|
|
else // crossing or touching
|
|
{
|
|
if (a_is_point || b_is_point)
|
|
{
|
|
return Policy::disjoint();
|
|
}
|
|
|
|
calc_t lon = 0, lat = 0;
|
|
intersection_point_flag ip_flag;
|
|
calc_t dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1;
|
|
if (calculate_ip_data(a1, a2, b1, b2,
|
|
a1_lon, a1_lat, a2_lon, a2_lat,
|
|
b1_lon, b1_lat, b2_lon, b2_lat,
|
|
res_a1_a2, res_a1_b1, res_a1_b2,
|
|
res_b1_b2, res_b1_a1, res_b1_a2,
|
|
sides, spheroid,
|
|
lon, lat,
|
|
dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1,
|
|
ip_flag))
|
|
{
|
|
// NOTE: If segment was reversed sides and segment ratios has to be altered
|
|
if (is_a_reversed)
|
|
{
|
|
// sides
|
|
sides_reverse_segment<0>(sides);
|
|
// distance for ratio
|
|
dist_a1_i1 = dist_a1_a2 - dist_a1_i1;
|
|
// ip flag
|
|
ip_flag_reverse_segment(ip_flag, ipi_at_a1, ipi_at_a2);
|
|
}
|
|
if (is_b_reversed)
|
|
{
|
|
// sides
|
|
sides_reverse_segment<1>(sides);
|
|
// distance for ratio
|
|
dist_b1_i1 = dist_b1_b2 - dist_b1_i1;
|
|
// ip flag
|
|
ip_flag_reverse_segment(ip_flag, ipi_at_b1, ipi_at_b2);
|
|
}
|
|
|
|
// intersects
|
|
segment_intersection_info
|
|
<
|
|
calc_t,
|
|
segment_ratio<calc_t>
|
|
> sinfo;
|
|
|
|
sinfo.lon = lon;
|
|
sinfo.lat = lat;
|
|
sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
|
|
sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
|
|
sinfo.ip_flag = ip_flag;
|
|
|
|
return Policy::segments_crosses(sides, sinfo, a, b);
|
|
}
|
|
else
|
|
{
|
|
return Policy::disjoint();
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Policy, typename CalcT, typename Segment, typename Point1, typename Point2, typename ResultInverse>
|
|
static inline typename Policy::return_type
|
|
collinear_one_degenerated(Segment const& segment, bool degenerated_a,
|
|
Point1 const& a1, Point1 const& a2,
|
|
Point2 const& b1, Point2 const& b2,
|
|
ResultInverse const& res_a1_a2,
|
|
ResultInverse const& res_a1_b1,
|
|
ResultInverse const& res_a1_b2,
|
|
bool is_other_reversed,
|
|
bool degen_neq_coords)
|
|
{
|
|
CalcT dist_1_2, dist_1_o;
|
|
if (! calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, dist_1_2, dist_1_o, degen_neq_coords))
|
|
{
|
|
return Policy::disjoint();
|
|
}
|
|
|
|
// NOTE: If segment was reversed segment ratio has to be altered
|
|
if (is_other_reversed)
|
|
{
|
|
// distance for ratio
|
|
dist_1_o = dist_1_2 - dist_1_o;
|
|
}
|
|
|
|
return Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
|
|
}
|
|
|
|
// TODO: instead of checks below test bi against a1 and a2 here?
|
|
// in order to make this independent from is_near()
|
|
template <typename Point1, typename Point2, typename ResultInverse, typename CalcT>
|
|
static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in
|
|
Point2 const& b1, Point2 const& /*b2*/, // in
|
|
ResultInverse const& res_a1_a2, // in
|
|
ResultInverse const& res_a1_b1, // in
|
|
ResultInverse const& res_a1_b2, // in
|
|
CalcT& dist_a1_a2, // out
|
|
CalcT& dist_a1_b1, // out
|
|
bool degen_neq_coords = false) // in
|
|
{
|
|
dist_a1_a2 = res_a1_a2.distance;
|
|
|
|
dist_a1_b1 = res_a1_b1.distance;
|
|
if (! same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth))
|
|
{
|
|
dist_a1_b1 = -dist_a1_b1;
|
|
}
|
|
|
|
// if b1 is close a1
|
|
if (is_endpoint_equal(dist_a1_b1, a1, b1))
|
|
{
|
|
dist_a1_b1 = 0;
|
|
return true;
|
|
}
|
|
// if b1 is close a2
|
|
else if (is_endpoint_equal(dist_a1_a2 - dist_a1_b1, a2, b1))
|
|
{
|
|
dist_a1_b1 = dist_a1_a2;
|
|
return true;
|
|
}
|
|
|
|
// check the other endpoint of degenerated segment near a pole
|
|
if (degen_neq_coords)
|
|
{
|
|
static CalcT const c0 = 0;
|
|
if (math::equals(res_a1_b2.distance, c0))
|
|
{
|
|
dist_a1_b1 = 0;
|
|
return true;
|
|
}
|
|
else if (math::equals(dist_a1_a2 - res_a1_b2.distance, c0))
|
|
{
|
|
dist_a1_b1 = dist_a1_a2;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// or i1 is on b
|
|
return segment_ratio<CalcT>(dist_a1_b1, dist_a1_a2).on_segment();
|
|
}
|
|
|
|
template <typename Point1, typename Point2, typename CalcT, typename ResultInverse, typename Spheroid_>
|
|
static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in
|
|
Point2 const& b1, Point2 const& b2, // in
|
|
CalcT const& a1_lon, CalcT const& a1_lat, // in
|
|
CalcT const& a2_lon, CalcT const& a2_lat, // in
|
|
CalcT const& b1_lon, CalcT const& b1_lat, // in
|
|
CalcT const& b2_lon, CalcT const& b2_lat, // in
|
|
ResultInverse const& res_a1_a2, // in
|
|
ResultInverse const& res_a1_b1, // in
|
|
ResultInverse const& res_a1_b2, // in
|
|
ResultInverse const& res_b1_b2, // in
|
|
ResultInverse const& res_b1_a1, // in
|
|
ResultInverse const& res_b1_a2, // in
|
|
side_info const& sides, // in
|
|
Spheroid_ const& spheroid, // in
|
|
CalcT & lon, CalcT & lat, // out
|
|
CalcT& dist_a1_a2, CalcT& dist_a1_ip, // out
|
|
CalcT& dist_b1_b2, CalcT& dist_b1_ip, // out
|
|
intersection_point_flag& ip_flag) // out
|
|
{
|
|
dist_a1_a2 = res_a1_a2.distance;
|
|
dist_b1_b2 = res_b1_b2.distance;
|
|
|
|
// assign the IP if some endpoints overlap
|
|
if (equals_point_point(a1, b1))
|
|
{
|
|
lon = a1_lon;
|
|
lat = a1_lat;
|
|
dist_a1_ip = 0;
|
|
dist_b1_ip = 0;
|
|
ip_flag = ipi_at_a1;
|
|
return true;
|
|
}
|
|
else if (equals_point_point(a1, b2))
|
|
{
|
|
lon = a1_lon;
|
|
lat = a1_lat;
|
|
dist_a1_ip = 0;
|
|
dist_b1_ip = dist_b1_b2;
|
|
ip_flag = ipi_at_a1;
|
|
return true;
|
|
}
|
|
else if (equals_point_point(a2, b1))
|
|
{
|
|
lon = a2_lon;
|
|
lat = a2_lat;
|
|
dist_a1_ip = dist_a1_a2;
|
|
dist_b1_ip = 0;
|
|
ip_flag = ipi_at_a2;
|
|
return true;
|
|
}
|
|
else if (equals_point_point(a2, b2))
|
|
{
|
|
lon = a2_lon;
|
|
lat = a2_lat;
|
|
dist_a1_ip = dist_a1_a2;
|
|
dist_b1_ip = dist_b1_b2;
|
|
ip_flag = ipi_at_a2;
|
|
return true;
|
|
}
|
|
|
|
// at this point we know that the endpoints doesn't overlap
|
|
// check cases when an endpoint lies on the other geodesic
|
|
if (sides.template get<0, 0>() == 0) // a1 wrt b
|
|
{
|
|
if (res_b1_a1.distance <= res_b1_b2.distance
|
|
&& same_direction(res_b1_a1.azimuth, res_b1_b2.azimuth))
|
|
{
|
|
lon = a1_lon;
|
|
lat = a1_lat;
|
|
dist_a1_ip = 0;
|
|
dist_b1_ip = res_b1_a1.distance;
|
|
ip_flag = ipi_at_a1;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else if (sides.template get<0, 1>() == 0) // a2 wrt b
|
|
{
|
|
if (res_b1_a2.distance <= res_b1_b2.distance
|
|
&& same_direction(res_b1_a2.azimuth, res_b1_b2.azimuth))
|
|
{
|
|
lon = a2_lon;
|
|
lat = a2_lat;
|
|
dist_a1_ip = res_a1_a2.distance;
|
|
dist_b1_ip = res_b1_a2.distance;
|
|
ip_flag = ipi_at_a2;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else if (sides.template get<1, 0>() == 0) // b1 wrt a
|
|
{
|
|
if (res_a1_b1.distance <= res_a1_a2.distance
|
|
&& same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth))
|
|
{
|
|
lon = b1_lon;
|
|
lat = b1_lat;
|
|
dist_a1_ip = res_a1_b1.distance;
|
|
dist_b1_ip = 0;
|
|
ip_flag = ipi_at_b1;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else if (sides.template get<1, 1>() == 0) // b2 wrt a
|
|
{
|
|
if (res_a1_b2.distance <= res_a1_a2.distance
|
|
&& same_direction(res_a1_b2.azimuth, res_a1_a2.azimuth))
|
|
{
|
|
lon = b2_lon;
|
|
lat = b2_lat;
|
|
dist_a1_ip = res_a1_b2.distance;
|
|
dist_b1_ip = res_b1_b2.distance;
|
|
ip_flag = ipi_at_b2;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// At this point neither the endpoints overlaps
|
|
// nor any andpoint lies on the other geodesic
|
|
// So the endpoints should lie on the opposite sides of both geodesics
|
|
|
|
bool const ok = formula::sjoberg_intersection<CalcT, FormulaPolicy::template inverse, Order>
|
|
::apply(a1_lon, a1_lat, a2_lon, a2_lat, res_a1_a2.azimuth,
|
|
b1_lon, b1_lat, b2_lon, b2_lat, res_b1_b2.azimuth,
|
|
lon, lat, spheroid);
|
|
|
|
if (! ok)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
typedef typename FormulaPolicy::template inverse<CalcT, true, true, false, false, false> inverse_dist_azi;
|
|
typedef typename inverse_dist_azi::result_type inverse_result;
|
|
|
|
inverse_result const res_a1_ip = inverse_dist_azi::apply(a1_lon, a1_lat, lon, lat, spheroid);
|
|
dist_a1_ip = res_a1_ip.distance;
|
|
if (! same_direction(res_a1_ip.azimuth, res_a1_a2.azimuth))
|
|
{
|
|
dist_a1_ip = -dist_a1_ip;
|
|
}
|
|
|
|
bool is_on_a = segment_ratio<CalcT>(dist_a1_ip, dist_a1_a2).on_segment();
|
|
// NOTE: not fully consistent with equals_point_point() since radians are always used.
|
|
bool is_on_a1 = math::equals(lon, a1_lon) && math::equals(lat, a1_lat);
|
|
bool is_on_a2 = math::equals(lon, a2_lon) && math::equals(lat, a2_lat);
|
|
|
|
if (! (is_on_a || is_on_a1 || is_on_a2))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
inverse_result const res_b1_ip = inverse_dist_azi::apply(b1_lon, b1_lat, lon, lat, spheroid);
|
|
dist_b1_ip = res_b1_ip.distance;
|
|
if (! same_direction(res_b1_ip.azimuth, res_b1_b2.azimuth))
|
|
{
|
|
dist_b1_ip = -dist_b1_ip;
|
|
}
|
|
|
|
bool is_on_b = segment_ratio<CalcT>(dist_b1_ip, dist_b1_b2).on_segment();
|
|
// NOTE: not fully consistent with equals_point_point() since radians are always used.
|
|
bool is_on_b1 = math::equals(lon, b1_lon) && math::equals(lat, b1_lat);
|
|
bool is_on_b2 = math::equals(lon, b2_lon) && math::equals(lat, b2_lat);
|
|
|
|
if (! (is_on_b || is_on_b1 || is_on_b2))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
typedef typename FormulaPolicy::template inverse<CalcT, true, false, false, false, false> inverse_dist;
|
|
|
|
ip_flag = ipi_inters;
|
|
|
|
if (is_on_b1)
|
|
{
|
|
lon = b1_lon;
|
|
lat = b1_lat;
|
|
dist_a1_ip = inverse_dist::apply(a1_lon, a1_lat, lon, lat, spheroid).distance; // for consistency
|
|
dist_b1_ip = 0;
|
|
ip_flag = ipi_at_b1;
|
|
}
|
|
else if (is_on_b2)
|
|
{
|
|
lon = b2_lon;
|
|
lat = b2_lat;
|
|
dist_a1_ip = inverse_dist::apply(a1_lon, a1_lat, lon, lat, spheroid).distance; // for consistency
|
|
dist_b1_ip = res_b1_b2.distance;
|
|
ip_flag = ipi_at_b2;
|
|
}
|
|
|
|
if (is_on_a1)
|
|
{
|
|
lon = a1_lon;
|
|
lat = a1_lat;
|
|
dist_a1_ip = 0;
|
|
dist_b1_ip = inverse_dist::apply(b1_lon, b1_lat, lon, lat, spheroid).distance; // for consistency
|
|
ip_flag = ipi_at_a1;
|
|
}
|
|
else if (is_on_a2)
|
|
{
|
|
lon = a2_lon;
|
|
lat = a2_lat;
|
|
dist_a1_ip = res_a1_a2.distance;
|
|
dist_b1_ip = inverse_dist::apply(b1_lon, b1_lat, lon, lat, spheroid).distance; // for consistency
|
|
ip_flag = ipi_at_a2;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename CalcT, typename P1, typename P2>
|
|
static inline bool is_endpoint_equal(CalcT const& dist,
|
|
P1 const& ai, P2 const& b1)
|
|
{
|
|
static CalcT const c0 = 0;
|
|
return is_near(dist) && (math::equals(dist, c0) || equals_point_point(ai, b1));
|
|
}
|
|
|
|
template <typename CalcT>
|
|
static inline bool is_near(CalcT const& dist)
|
|
{
|
|
// NOTE: This strongly depends on the Inverse method
|
|
CalcT const small_number = CalcT(std::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
|
|
return math::abs(dist) <= small_number;
|
|
}
|
|
|
|
template <typename ProjCoord1, typename ProjCoord2>
|
|
static inline int position_value(ProjCoord1 const& ca1,
|
|
ProjCoord2 const& cb1,
|
|
ProjCoord2 const& cb2)
|
|
{
|
|
// S1x 0 1 2 3 4
|
|
// S2 |---------->
|
|
return math::equals(ca1, cb1) ? 1
|
|
: math::equals(ca1, cb2) ? 3
|
|
: cb1 < cb2 ?
|
|
( ca1 < cb1 ? 0
|
|
: ca1 > cb2 ? 4
|
|
: 2 )
|
|
: ( ca1 > cb1 ? 0
|
|
: ca1 < cb2 ? 4
|
|
: 2 );
|
|
}
|
|
|
|
template <typename CalcT>
|
|
static inline bool same_direction(CalcT const& azimuth1, CalcT const& azimuth2)
|
|
{
|
|
// distance between two angles normalized to (-180, 180]
|
|
CalcT const angle_diff = math::longitude_distance_signed<radian>(azimuth1, azimuth2);
|
|
return math::abs(angle_diff) <= math::half_pi<CalcT>();
|
|
}
|
|
|
|
template <int Which>
|
|
static inline void sides_reverse_segment(side_info & sides)
|
|
{
|
|
// names assuming segment A is reversed (Which == 0)
|
|
int a1_wrt_b = sides.template get<Which, 0>();
|
|
int a2_wrt_b = sides.template get<Which, 1>();
|
|
std::swap(a1_wrt_b, a2_wrt_b);
|
|
sides.template set<Which>(a1_wrt_b, a2_wrt_b);
|
|
int b1_wrt_a = sides.template get<1 - Which, 0>();
|
|
int b2_wrt_a = sides.template get<1 - Which, 1>();
|
|
sides.template set<1 - Which>(-b1_wrt_a, -b2_wrt_a);
|
|
}
|
|
|
|
static inline void ip_flag_reverse_segment(intersection_point_flag & ip_flag,
|
|
intersection_point_flag const& ipi_at_p1,
|
|
intersection_point_flag const& ipi_at_p2)
|
|
{
|
|
ip_flag = ip_flag == ipi_at_p1 ? ipi_at_p2 :
|
|
ip_flag == ipi_at_p2 ? ipi_at_p1 :
|
|
ip_flag;
|
|
}
|
|
|
|
template <typename Point1, typename Point2>
|
|
static inline bool equals_point_point(Point1 const& point1, Point2 const& point2)
|
|
{
|
|
return strategy::within::spherical_point_point::apply(point1, point2);
|
|
}
|
|
|
|
private:
|
|
Spheroid m_spheroid;
|
|
};
|
|
|
|
|
|
}} // namespace strategy::intersection
|
|
|
|
}} // namespace boost::geometry
|
|
|
|
|
|
#endif // BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
|