171 lines
5.0 KiB
C++
171 lines
5.0 KiB
C++
// Boost.Geometry
|
|
|
|
// Copyright (c) 2018 Oracle and/or its affiliates.
|
|
|
|
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
|
|
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
|
|
|
|
// Use, modification and distribution is subject to the Boost Software License,
|
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_GEOMETRY_FORMULAS_MERIDIAN_DIRECT_HPP
|
|
#define BOOST_GEOMETRY_FORMULAS_MERIDIAN_DIRECT_HPP
|
|
|
|
#include <boost/math/constants/constants.hpp>
|
|
|
|
#include <boost/geometry/core/radius.hpp>
|
|
|
|
#include <boost/geometry/formulas/differential_quantities.hpp>
|
|
#include <boost/geometry/formulas/flattening.hpp>
|
|
#include <boost/geometry/formulas/meridian_inverse.hpp>
|
|
#include <boost/geometry/formulas/quarter_meridian.hpp>
|
|
#include <boost/geometry/formulas/result_direct.hpp>
|
|
|
|
#include <boost/geometry/util/condition.hpp>
|
|
#include <boost/geometry/util/math.hpp>
|
|
|
|
namespace boost { namespace geometry { namespace formula
|
|
{
|
|
|
|
/*!
|
|
\brief Compute the direct geodesic problem on a meridian
|
|
*/
|
|
|
|
template <
|
|
typename CT,
|
|
bool EnableCoordinates = true,
|
|
bool EnableReverseAzimuth = false,
|
|
bool EnableReducedLength = false,
|
|
bool EnableGeodesicScale = false,
|
|
unsigned int Order = 4
|
|
>
|
|
class meridian_direct
|
|
{
|
|
static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
|
|
static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;
|
|
static const bool CalcCoordinates = EnableCoordinates || CalcRevAzimuth;
|
|
|
|
public:
|
|
typedef result_direct<CT> result_type;
|
|
|
|
template <typename T, typename Dist, typename Spheroid>
|
|
static inline result_type apply(T const& lo1,
|
|
T const& la1,
|
|
Dist const& distance,
|
|
bool north,
|
|
Spheroid const& spheroid)
|
|
{
|
|
result_type result;
|
|
|
|
CT const half_pi = math::half_pi<CT>();
|
|
CT const pi = math::pi<CT>();
|
|
CT const one_and_a_half_pi = pi + half_pi;
|
|
CT const c0 = 0;
|
|
|
|
CT azimuth = north ? c0 : pi;
|
|
|
|
if (BOOST_GEOMETRY_CONDITION(CalcCoordinates))
|
|
{
|
|
CT s0 = meridian_inverse<CT, Order>::apply(la1, spheroid);
|
|
int signed_distance = north ? distance : -distance;
|
|
result.lon2 = lo1;
|
|
result.lat2 = apply(s0 + signed_distance, spheroid);
|
|
}
|
|
|
|
if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
|
|
{
|
|
result.reverse_azimuth = azimuth;
|
|
|
|
|
|
if (result.lat2 > half_pi &&
|
|
result.lat2 < one_and_a_half_pi)
|
|
{
|
|
result.reverse_azimuth = pi;
|
|
}
|
|
else if (result.lat2 < -half_pi &&
|
|
result.lat2 > -one_and_a_half_pi)
|
|
{
|
|
result.reverse_azimuth = c0;
|
|
}
|
|
|
|
}
|
|
|
|
if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
|
|
{
|
|
CT const b = CT(get_radius<2>(spheroid));
|
|
CT const f = formula::flattening<CT>(spheroid);
|
|
|
|
boost::geometry::math::normalize_spheroidal_coordinates
|
|
<
|
|
boost::geometry::radian,
|
|
double
|
|
>(result.lon2, result.lat2);
|
|
|
|
typedef differential_quantities
|
|
<
|
|
CT,
|
|
EnableReducedLength,
|
|
EnableGeodesicScale,
|
|
Order
|
|
> quantities;
|
|
quantities::apply(lo1, la1, result.lon2, result.lat2,
|
|
azimuth, result.reverse_azimuth,
|
|
b, f,
|
|
result.reduced_length, result.geodesic_scale);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// https://en.wikipedia.org/wiki/Meridian_arc#The_inverse_meridian_problem_for_the_ellipsoid
|
|
// latitudes are assumed to be in radians and in [-pi/2,pi/2]
|
|
template <typename T, typename Spheroid>
|
|
static CT apply(T m, Spheroid const& spheroid)
|
|
{
|
|
CT const f = formula::flattening<CT>(spheroid);
|
|
CT n = f / (CT(2) - f);
|
|
CT mp = formula::quarter_meridian<CT>(spheroid);
|
|
CT mu = geometry::math::pi<CT>()/CT(2) * m / mp;
|
|
|
|
if (Order == 0)
|
|
{
|
|
return mu;
|
|
}
|
|
|
|
CT H2 = 1.5 * n;
|
|
|
|
if (Order == 1)
|
|
{
|
|
return mu + H2 * sin(2*mu);
|
|
}
|
|
|
|
CT n2 = n * n;
|
|
CT H4 = 1.3125 * n2;
|
|
|
|
if (Order == 2)
|
|
{
|
|
return mu + H2 * sin(2*mu) + H4 * sin(4*mu);
|
|
}
|
|
|
|
CT n3 = n2 * n;
|
|
H2 -= 0.84375 * n3;
|
|
CT H6 = 1.572916667 * n3;
|
|
|
|
if (Order == 3)
|
|
{
|
|
return mu + H2 * sin(2*mu) + H4 * sin(4*mu) + H6 * sin(6*mu);
|
|
}
|
|
|
|
CT n4 = n2 * n2;
|
|
H4 -= 1.71875 * n4;
|
|
CT H8 = 2.142578125 * n4;
|
|
|
|
// Order 4 or higher
|
|
return mu + H2 * sin(2*mu) + H4 * sin(4*mu) + H6 * sin(6*mu) + H8 * sin(8*mu);
|
|
}
|
|
};
|
|
|
|
}}} // namespace boost::geometry::formula
|
|
|
|
#endif // BOOST_GEOMETRY_FORMULAS_MERIDIAN_DIRECT_HPP
|