libcarla/include/system/boost/geometry/arithmetic/cross_product.hpp
2024-10-18 13:19:59 +08:00

211 lines
5.7 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
// Copyright (c) 2008-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
// This file was modified by Oracle on 2016-2020.
// Modifications copyright (c) 2016-2020, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ARITHMETIC_CROSS_PRODUCT_HPP
#define BOOST_GEOMETRY_ARITHMETIC_CROSS_PRODUCT_HPP
#include <cstddef>
#include <type_traits>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/make.hpp>
#include <boost/geometry/core/coordinate_dimension.hpp>
#include <boost/geometry/core/static_assert.hpp>
#include <boost/geometry/geometries/concepts/point_concept.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
template <std::size_t Dimension>
struct cross_product
{
// We define cross product only for 2d (see Wolfram) and 3d.
// In Math, it is also well-defined for 7-dimension.
// Generalisation of cross product to n-dimension is defined as
// wedge product but it is not direct analogue to binary cross product.
BOOST_GEOMETRY_STATIC_ASSERT_FALSE(
"Not implemented for this Dimension.",
std::integral_constant<std::size_t, Dimension>);
};
template <>
struct cross_product<2>
{
template <typename P1, typename P2, typename ResultP>
static void apply(P1 const& p1, P2 const& p2, ResultP& result)
{
assert_dimension<P1, 2>();
assert_dimension<P2, 2>();
assert_dimension<ResultP, 2>();
// For 2-dimensions, analog of the cross product U(x,y) and V(x,y) is
// Ux * Vy - Uy * Vx
// which is returned as 0-component (or X) of 2d vector, 1-component is undefined.
set<0>(result, get<0>(p1) * get<1>(p2) - get<1>(p1) * get<0>(p2));
}
};
template <>
struct cross_product<3>
{
template <typename P1, typename P2, typename ResultP>
static void apply(P1 const& p1, P2 const& p2, ResultP& result)
{
assert_dimension<P1, 3>();
assert_dimension<P2, 3>();
assert_dimension<ResultP, 3>();
set<0>(result, get<1>(p1) * get<2>(p2) - get<2>(p1) * get<1>(p2));
set<1>(result, get<2>(p1) * get<0>(p2) - get<0>(p1) * get<2>(p2));
set<2>(result, get<0>(p1) * get<1>(p2) - get<1>(p1) * get<0>(p2));
}
template <typename ResultP, typename P1, typename P2>
static constexpr ResultP apply(P1 const& p1, P2 const& p2)
{
assert_dimension<P1, 3>();
assert_dimension<P2, 3>();
assert_dimension<ResultP, 3>();
return traits::make<ResultP>::apply(
get<1>(p1) * get<2>(p2) - get<2>(p1) * get<1>(p2),
get<2>(p1) * get<0>(p2) - get<0>(p1) * get<2>(p2),
get<0>(p1) * get<1>(p2) - get<1>(p1) * get<0>(p2));
}
};
} // namespace detail
#endif // DOXYGEN_NO_DETAIL
/*!
\brief Computes the cross product of two vectors.
\details All vectors should have the same dimension, 3 or 2.
\ingroup arithmetic
\param p1 first vector
\param p2 second vector
\return the cross product vector
*/
template
<
typename ResultP, typename P1, typename P2,
std::enable_if_t
<
dimension<ResultP>::value != 3
|| ! traits::make<ResultP>::is_specialized,
int
> = 0
>
inline ResultP cross_product(P1 const& p1, P2 const& p2)
{
BOOST_CONCEPT_ASSERT( (concepts::Point<ResultP>) );
BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<P1>) );
BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<P2>) );
ResultP result;
detail::cross_product<dimension<ResultP>::value>::apply(p1, p2, result);
return result;
}
template
<
typename ResultP, typename P1, typename P2,
std::enable_if_t
<
dimension<ResultP>::value == 3
&& traits::make<ResultP>::is_specialized,
int
> = 0
>
// workaround for VS2015
#if !defined(_MSC_VER) || (_MSC_VER >= 1910)
constexpr
#endif
inline ResultP cross_product(P1 const& p1, P2 const& p2)
{
BOOST_CONCEPT_ASSERT((concepts::Point<ResultP>));
BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P1>));
BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P2>));
return detail::cross_product<3>::apply<ResultP>(p1, p2);
}
/*!
\brief Computes the cross product of two vectors.
\details All vectors should have the same dimension, 3 or 2.
\ingroup arithmetic
\param p1 first vector
\param p2 second vector
\return the cross product vector
\qbk{[heading Examples]}
\qbk{[cross_product] [cross_product_output]}
*/
template
<
typename P,
std::enable_if_t
<
dimension<P>::value != 3
|| ! traits::make<P>::is_specialized,
int
> = 0
>
inline P cross_product(P const& p1, P const& p2)
{
BOOST_CONCEPT_ASSERT((concepts::Point<P>));
BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P>));
P result;
detail::cross_product<dimension<P>::value>::apply(p1, p2, result);
return result;
}
template
<
typename P,
std::enable_if_t
<
dimension<P>::value == 3
&& traits::make<P>::is_specialized,
int
> = 0
>
// workaround for VS2015
#if !defined(_MSC_VER) || (_MSC_VER >= 1910)
constexpr
#endif
inline P cross_product(P const& p1, P const& p2)
{
BOOST_CONCEPT_ASSERT((concepts::Point<P>));
BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P>));
return detail::cross_product<3>::apply<P>(p1, p2);
}
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ARITHMETIC_CROSS_PRODUCT_HPP