211 lines
5.7 KiB
C++
211 lines
5.7 KiB
C++
// Boost.Geometry (aka GGL, Generic Geometry Library)
|
|
|
|
// Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
|
|
// Copyright (c) 2008-2012 Barend Gehrels, Amsterdam, the Netherlands.
|
|
// Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
|
|
|
|
// This file was modified by Oracle on 2016-2020.
|
|
// Modifications copyright (c) 2016-2020, Oracle and/or its affiliates.
|
|
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
|
|
|
|
// Use, modification and distribution is subject to the Boost Software License,
|
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_GEOMETRY_ARITHMETIC_CROSS_PRODUCT_HPP
|
|
#define BOOST_GEOMETRY_ARITHMETIC_CROSS_PRODUCT_HPP
|
|
|
|
|
|
#include <cstddef>
|
|
#include <type_traits>
|
|
|
|
#include <boost/geometry/core/access.hpp>
|
|
#include <boost/geometry/core/make.hpp>
|
|
#include <boost/geometry/core/coordinate_dimension.hpp>
|
|
#include <boost/geometry/core/static_assert.hpp>
|
|
|
|
#include <boost/geometry/geometries/concepts/point_concept.hpp>
|
|
|
|
|
|
namespace boost { namespace geometry
|
|
{
|
|
|
|
#ifndef DOXYGEN_NO_DETAIL
|
|
namespace detail
|
|
{
|
|
|
|
template <std::size_t Dimension>
|
|
struct cross_product
|
|
{
|
|
// We define cross product only for 2d (see Wolfram) and 3d.
|
|
// In Math, it is also well-defined for 7-dimension.
|
|
// Generalisation of cross product to n-dimension is defined as
|
|
// wedge product but it is not direct analogue to binary cross product.
|
|
BOOST_GEOMETRY_STATIC_ASSERT_FALSE(
|
|
"Not implemented for this Dimension.",
|
|
std::integral_constant<std::size_t, Dimension>);
|
|
};
|
|
|
|
template <>
|
|
struct cross_product<2>
|
|
{
|
|
template <typename P1, typename P2, typename ResultP>
|
|
static void apply(P1 const& p1, P2 const& p2, ResultP& result)
|
|
{
|
|
assert_dimension<P1, 2>();
|
|
assert_dimension<P2, 2>();
|
|
assert_dimension<ResultP, 2>();
|
|
|
|
// For 2-dimensions, analog of the cross product U(x,y) and V(x,y) is
|
|
// Ux * Vy - Uy * Vx
|
|
// which is returned as 0-component (or X) of 2d vector, 1-component is undefined.
|
|
set<0>(result, get<0>(p1) * get<1>(p2) - get<1>(p1) * get<0>(p2));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct cross_product<3>
|
|
{
|
|
template <typename P1, typename P2, typename ResultP>
|
|
static void apply(P1 const& p1, P2 const& p2, ResultP& result)
|
|
{
|
|
assert_dimension<P1, 3>();
|
|
assert_dimension<P2, 3>();
|
|
assert_dimension<ResultP, 3>();
|
|
|
|
set<0>(result, get<1>(p1) * get<2>(p2) - get<2>(p1) * get<1>(p2));
|
|
set<1>(result, get<2>(p1) * get<0>(p2) - get<0>(p1) * get<2>(p2));
|
|
set<2>(result, get<0>(p1) * get<1>(p2) - get<1>(p1) * get<0>(p2));
|
|
}
|
|
|
|
template <typename ResultP, typename P1, typename P2>
|
|
static constexpr ResultP apply(P1 const& p1, P2 const& p2)
|
|
{
|
|
assert_dimension<P1, 3>();
|
|
assert_dimension<P2, 3>();
|
|
assert_dimension<ResultP, 3>();
|
|
|
|
return traits::make<ResultP>::apply(
|
|
get<1>(p1) * get<2>(p2) - get<2>(p1) * get<1>(p2),
|
|
get<2>(p1) * get<0>(p2) - get<0>(p1) * get<2>(p2),
|
|
get<0>(p1) * get<1>(p2) - get<1>(p1) * get<0>(p2));
|
|
}
|
|
};
|
|
|
|
} // namespace detail
|
|
#endif // DOXYGEN_NO_DETAIL
|
|
|
|
|
|
/*!
|
|
\brief Computes the cross product of two vectors.
|
|
\details All vectors should have the same dimension, 3 or 2.
|
|
\ingroup arithmetic
|
|
\param p1 first vector
|
|
\param p2 second vector
|
|
\return the cross product vector
|
|
|
|
*/
|
|
|
|
template
|
|
<
|
|
typename ResultP, typename P1, typename P2,
|
|
std::enable_if_t
|
|
<
|
|
dimension<ResultP>::value != 3
|
|
|| ! traits::make<ResultP>::is_specialized,
|
|
int
|
|
> = 0
|
|
>
|
|
inline ResultP cross_product(P1 const& p1, P2 const& p2)
|
|
{
|
|
BOOST_CONCEPT_ASSERT( (concepts::Point<ResultP>) );
|
|
BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<P1>) );
|
|
BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<P2>) );
|
|
|
|
ResultP result;
|
|
detail::cross_product<dimension<ResultP>::value>::apply(p1, p2, result);
|
|
return result;
|
|
}
|
|
|
|
template
|
|
<
|
|
typename ResultP, typename P1, typename P2,
|
|
std::enable_if_t
|
|
<
|
|
dimension<ResultP>::value == 3
|
|
&& traits::make<ResultP>::is_specialized,
|
|
int
|
|
> = 0
|
|
>
|
|
// workaround for VS2015
|
|
#if !defined(_MSC_VER) || (_MSC_VER >= 1910)
|
|
constexpr
|
|
#endif
|
|
inline ResultP cross_product(P1 const& p1, P2 const& p2)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((concepts::Point<ResultP>));
|
|
BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P1>));
|
|
BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P2>));
|
|
|
|
return detail::cross_product<3>::apply<ResultP>(p1, p2);
|
|
}
|
|
|
|
/*!
|
|
\brief Computes the cross product of two vectors.
|
|
\details All vectors should have the same dimension, 3 or 2.
|
|
\ingroup arithmetic
|
|
\param p1 first vector
|
|
\param p2 second vector
|
|
\return the cross product vector
|
|
|
|
\qbk{[heading Examples]}
|
|
\qbk{[cross_product] [cross_product_output]}
|
|
*/
|
|
template
|
|
<
|
|
typename P,
|
|
std::enable_if_t
|
|
<
|
|
dimension<P>::value != 3
|
|
|| ! traits::make<P>::is_specialized,
|
|
int
|
|
> = 0
|
|
>
|
|
inline P cross_product(P const& p1, P const& p2)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((concepts::Point<P>));
|
|
BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P>));
|
|
|
|
P result;
|
|
detail::cross_product<dimension<P>::value>::apply(p1, p2, result);
|
|
return result;
|
|
}
|
|
|
|
|
|
template
|
|
<
|
|
typename P,
|
|
std::enable_if_t
|
|
<
|
|
dimension<P>::value == 3
|
|
&& traits::make<P>::is_specialized,
|
|
int
|
|
> = 0
|
|
>
|
|
// workaround for VS2015
|
|
#if !defined(_MSC_VER) || (_MSC_VER >= 1910)
|
|
constexpr
|
|
#endif
|
|
inline P cross_product(P const& p1, P const& p2)
|
|
{
|
|
BOOST_CONCEPT_ASSERT((concepts::Point<P>));
|
|
BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P>));
|
|
|
|
return detail::cross_product<3>::apply<P>(p1, p2);
|
|
}
|
|
|
|
|
|
}} // namespace boost::geometry
|
|
|
|
#endif // BOOST_GEOMETRY_ARITHMETIC_CROSS_PRODUCT_HPP
|