// //======================================================================= // Copyright 2007 Stanford University // Authors: David Gleich // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= // #ifndef BOOST_GRAPH_CORE_NUMBERS_HPP #define BOOST_GRAPH_CORE_NUMBERS_HPP #include #include #include #include /* * core_numbers * * Requirement: IncidenceGraph */ // History // // 30 July 2007 // Added visitors to the implementation // // 8 February 2008 // Fixed headers and missing typename namespace boost { // A linear time O(m) algorithm to compute the indegree core number // of a graph for unweighted graphs. // // and a O((n+m) log n) algorithm to compute the in-edge-weight core // numbers of a weighted graph. // // The linear algorithm comes from: // Vladimir Batagelj and Matjaz Zaversnik, "An O(m) Algorithm for Cores // Decomposition of Networks." Sept. 1 2002. template < typename Visitor, typename Graph > struct CoreNumbersVisitorConcept { void constraints() { BOOST_CONCEPT_ASSERT((CopyConstructibleConcept< Visitor >)); vis.examine_vertex(u, g); vis.finish_vertex(u, g); vis.examine_edge(e, g); } Visitor vis; Graph g; typename graph_traits< Graph >::vertex_descriptor u; typename graph_traits< Graph >::edge_descriptor e; }; template < class Visitors = null_visitor > class core_numbers_visitor : public bfs_visitor< Visitors > { public: core_numbers_visitor() {} core_numbers_visitor(Visitors vis) : bfs_visitor< Visitors >(vis) {} private: template < class Vertex, class Graph > void initialize_vertex(Vertex, Graph&) { } template < class Vertex, class Graph > void discover_vertex(Vertex, Graph&) { } template < class Vertex, class Graph > void gray_target(Vertex, Graph&) {} template < class Vertex, class Graph > void black_target(Vertex, Graph&) {} template < class Edge, class Graph > void tree_edge(Edge, Graph&) {} template < class Edge, class Graph > void non_tree_edge(Edge, Graph&) {} }; template < class Visitors > core_numbers_visitor< Visitors > make_core_numbers_visitor(Visitors vis) { return core_numbers_visitor< Visitors >(vis); } typedef core_numbers_visitor<> default_core_numbers_visitor; namespace detail { // implement a constant_property_map to simplify compute_in_degree // for the weighted and unweighted case // this is based on dummy property map template < typename ValueType > class constant_value_property_map : public boost::put_get_helper< ValueType, constant_value_property_map< ValueType > > { public: typedef void key_type; typedef ValueType value_type; typedef const ValueType& reference; typedef boost::readable_property_map_tag category; inline constant_value_property_map(ValueType cc) : c(cc) {} inline constant_value_property_map( const constant_value_property_map< ValueType >& x) : c(x.c) { } template < class Vertex > inline reference operator[](Vertex) const { return c; } protected: ValueType c; }; // the core numbers start as the indegree or inweight. This function // will initialize these values template < typename Graph, typename CoreMap, typename EdgeWeightMap > void compute_in_degree_map(Graph& g, CoreMap d, EdgeWeightMap wm) { typename graph_traits< Graph >::vertex_iterator vi, vi_end; typename graph_traits< Graph >::out_edge_iterator ei, ei_end; for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) { put(d, *vi, 0); } for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) { for (boost::tie(ei, ei_end) = out_edges(*vi, g); ei != ei_end; ++ei) { put(d, target(*ei, g), get(d, target(*ei, g)) + get(wm, *ei)); } } } // the version for weighted graphs is a little different template < typename Graph, typename CoreMap, typename EdgeWeightMap, typename MutableQueue, typename Visitor > typename property_traits< CoreMap >::value_type core_numbers_impl( Graph& g, CoreMap c, EdgeWeightMap wm, MutableQueue& Q, Visitor vis) { typename property_traits< CoreMap >::value_type v_cn = 0; typedef typename graph_traits< Graph >::vertex_descriptor vertex; while (!Q.empty()) { // remove v from the Q, and then decrease the core numbers // of its successors vertex v = Q.top(); vis.examine_vertex(v, g); Q.pop(); v_cn = get(c, v); typename graph_traits< Graph >::out_edge_iterator oi, oi_end; for (boost::tie(oi, oi_end) = out_edges(v, g); oi != oi_end; ++oi) { vis.examine_edge(*oi, g); vertex u = target(*oi, g); // if c[u] > c[v], then u is still in the graph, if (get(c, u) > v_cn) { // remove the edge put(c, u, get(c, u) - get(wm, *oi)); if (Q.contains(u)) Q.update(u); } } vis.finish_vertex(v, g); } return (v_cn); } template < typename Graph, typename CoreMap, typename EdgeWeightMap, typename IndexMap, typename CoreNumVisitor > typename property_traits< CoreMap >::value_type core_numbers_dispatch( Graph& g, CoreMap c, EdgeWeightMap wm, IndexMap im, CoreNumVisitor vis) { typedef typename property_traits< CoreMap >::value_type D; typedef std::less< D > Cmp; // build the mutable queue typedef typename graph_traits< Graph >::vertex_descriptor vertex; std::vector< std::size_t > index_in_heap_data(num_vertices(g)); typedef iterator_property_map< std::vector< std::size_t >::iterator, IndexMap > index_in_heap_map_type; index_in_heap_map_type index_in_heap_map( index_in_heap_data.begin(), im); typedef d_ary_heap_indirect< vertex, 4, index_in_heap_map_type, CoreMap, Cmp > MutableQueue; MutableQueue Q(c, index_in_heap_map, Cmp()); typename graph_traits< Graph >::vertex_iterator vi, vi_end; for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) { Q.push(*vi); } return core_numbers_impl(g, c, wm, Q, vis); } // the version for the unweighted case // for this functions CoreMap must be initialized // with the in degree of each vertex template < typename Graph, typename CoreMap, typename PositionMap, typename Visitor > typename property_traits< CoreMap >::value_type core_numbers_impl( Graph& g, CoreMap c, PositionMap pos, Visitor vis) { typedef typename graph_traits< Graph >::vertices_size_type size_type; typedef typename graph_traits< Graph >::degree_size_type degree_type; typedef typename graph_traits< Graph >::vertex_descriptor vertex; typename graph_traits< Graph >::vertex_iterator vi, vi_end; // store the vertex core numbers typename property_traits< CoreMap >::value_type v_cn = 0; // compute the maximum degree (degrees are in the coremap) typename graph_traits< Graph >::degree_size_type max_deg = 0; for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) { max_deg = (std::max< typename graph_traits< Graph >::degree_size_type >)(max_deg, get(c, *vi)); } // store the vertices in bins by their degree // allocate two extra locations to ease boundary cases std::vector< size_type > bin(max_deg + 2); for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) { ++bin[get(c, *vi)]; } // this loop sets bin[d] to the starting position of vertices // with degree d in the vert array for the bucket sort size_type cur_pos = 0; for (degree_type cur_deg = 0; cur_deg < max_deg + 2; ++cur_deg) { degree_type tmp = bin[cur_deg]; bin[cur_deg] = cur_pos; cur_pos += tmp; } // perform the bucket sort with pos and vert so that // pos[0] is the vertex of smallest degree std::vector< vertex > vert(num_vertices(g)); for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) { vertex v = *vi; size_type p = bin[get(c, v)]; put(pos, v, p); vert[p] = v; ++bin[get(c, v)]; } // we ``abused'' bin while placing the vertices, now, // we need to restore it std::copy(boost::make_reverse_iterator(bin.end() - 2), boost::make_reverse_iterator(bin.begin()), boost::make_reverse_iterator(bin.end() - 1)); // now simulate removing the vertices for (size_type i = 0; i < num_vertices(g); ++i) { vertex v = vert[i]; vis.examine_vertex(v, g); v_cn = get(c, v); typename graph_traits< Graph >::out_edge_iterator oi, oi_end; for (boost::tie(oi, oi_end) = out_edges(v, g); oi != oi_end; ++oi) { vis.examine_edge(*oi, g); vertex u = target(*oi, g); // if c[u] > c[v], then u is still in the graph, if (get(c, u) > v_cn) { degree_type deg_u = get(c, u); degree_type pos_u = get(pos, u); // w is the first vertex with the same degree as u // (this is the resort operation!) degree_type pos_w = bin[deg_u]; vertex w = vert[pos_w]; if (u != v) { // swap u and w put(pos, u, pos_w); put(pos, w, pos_u); vert[pos_w] = u; vert[pos_u] = w; } // now, the vertices array is sorted assuming // we perform the following step // start the set of vertices with degree of u // one into the future (this now points at vertex // w which we swapped with u). ++bin[deg_u]; // we are removing v from the graph, so u's degree // decreases put(c, u, get(c, u) - 1); } } vis.finish_vertex(v, g); } return v_cn; } } // namespace detail // non-named parameter version for the unweighted case template < typename Graph, typename CoreMap, typename CoreNumVisitor > typename property_traits< CoreMap >::value_type core_numbers( Graph& g, CoreMap c, CoreNumVisitor vis) { typedef typename graph_traits< Graph >::vertices_size_type size_type; detail::compute_in_degree_map(g, c, detail::constant_value_property_map< typename property_traits< CoreMap >::value_type >(1)); return detail::core_numbers_impl(g, c, make_iterator_property_map( std::vector< size_type >(num_vertices(g)).begin(), get(vertex_index, g)), vis); } // non-named paramter version for the unweighted case template < typename Graph, typename CoreMap > typename property_traits< CoreMap >::value_type core_numbers( Graph& g, CoreMap c) { return core_numbers(g, c, make_core_numbers_visitor(null_visitor())); } // non-named parameter version for the weighted case template < typename Graph, typename CoreMap, typename EdgeWeightMap, typename VertexIndexMap, typename CoreNumVisitor > typename property_traits< CoreMap >::value_type core_numbers(Graph& g, CoreMap c, EdgeWeightMap wm, VertexIndexMap vim, CoreNumVisitor vis) { detail::compute_in_degree_map(g, c, wm); return detail::core_numbers_dispatch(g, c, wm, vim, vis); } // non-named parameter version for the weighted case // template // typename property_traits::value_type // core_numbers(Graph& g, CoreMap c, EdgeWeightMap wm) // { // typedef typename graph_traits::vertices_size_type size_type; // detail::compute_in_degree_map(g,c,wm); // return detail::core_numbers_dispatch(g,c,wm,get(vertex_index,g), // make_core_numbers_visitor(null_visitor())); // } template < typename Graph, typename CoreMap > typename property_traits< CoreMap >::value_type weighted_core_numbers( Graph& g, CoreMap c) { return weighted_core_numbers( g, c, make_core_numbers_visitor(null_visitor())); } template < typename Graph, typename CoreMap, typename CoreNumVisitor > typename property_traits< CoreMap >::value_type weighted_core_numbers( Graph& g, CoreMap c, CoreNumVisitor vis) { return core_numbers(g, c, get(edge_weight, g), get(vertex_index, g), vis); } } // namespace boost #endif // BOOST_GRAPH_CORE_NUMBERS_HPP