// Boost.Units - A C++ library for zero-overhead dimensional analysis and // unit/quantity manipulation and conversion // // Copyright (C) 2003-2008 Matthias Christian Schabel // Copyright (C) 2007-2008 Steven Watanabe // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_UNITS_LIMITS_HPP #define BOOST_UNITS_LIMITS_HPP /// /// \file /// \brief specialize std::numeric_limits for units. /// #include <limits> #include <boost/config.hpp> #include <boost/units/units_fwd.hpp> namespace std { template<class Unit, class T> class numeric_limits< ::boost::units::quantity<Unit, T> > { public: typedef ::boost::units::quantity<Unit, T> quantity_type; BOOST_STATIC_CONSTEXPR bool is_specialized = std::numeric_limits<T>::is_specialized; static BOOST_CONSTEXPR quantity_type (min)() { return(quantity_type::from_value((std::numeric_limits<T>::min)())); } static BOOST_CONSTEXPR quantity_type (max)() { return(quantity_type::from_value((std::numeric_limits<T>::max)())); } #ifndef BOOST_NO_CXX11_NUMERIC_LIMITS static BOOST_CONSTEXPR quantity_type (lowest)() { return(quantity_type::from_value((std::numeric_limits<T>::lowest)())); } #endif BOOST_STATIC_CONSTEXPR int digits = std::numeric_limits<T>::digits; BOOST_STATIC_CONSTEXPR int digits10 = std::numeric_limits<T>::digits10; #ifndef BOOST_NO_CXX11_NUMERIC_LIMITS BOOST_STATIC_CONSTEXPR int max_digits10 = std::numeric_limits<T>::max_digits10; #endif BOOST_STATIC_CONSTEXPR bool is_signed = std::numeric_limits<T>::is_signed; BOOST_STATIC_CONSTEXPR bool is_integer = std::numeric_limits<T>::is_integer; BOOST_STATIC_CONSTEXPR bool is_exact = std::numeric_limits<T>::is_exact; BOOST_STATIC_CONSTEXPR int radix = std::numeric_limits<T>::radix; static BOOST_CONSTEXPR quantity_type epsilon() { return(quantity_type::from_value(std::numeric_limits<T>::epsilon())); } static BOOST_CONSTEXPR quantity_type round_error() { return(quantity_type::from_value(std::numeric_limits<T>::round_error())); } BOOST_STATIC_CONSTEXPR int min_exponent = std::numeric_limits<T>::min_exponent; BOOST_STATIC_CONSTEXPR int min_exponent10 = std::numeric_limits<T>::min_exponent10; BOOST_STATIC_CONSTEXPR int max_exponent = std::numeric_limits<T>::max_exponent; BOOST_STATIC_CONSTEXPR int max_exponent10 = std::numeric_limits<T>::max_exponent10; BOOST_STATIC_CONSTEXPR bool has_infinity = std::numeric_limits<T>::has_infinity; BOOST_STATIC_CONSTEXPR bool has_quiet_NaN = std::numeric_limits<T>::has_quiet_NaN; BOOST_STATIC_CONSTEXPR bool has_signaling_NaN = std::numeric_limits<T>::has_signaling_NaN; BOOST_STATIC_CONSTEXPR bool has_denorm_loss = std::numeric_limits<T>::has_denorm_loss; static BOOST_CONSTEXPR quantity_type infinity() { return(quantity_type::from_value(std::numeric_limits<T>::infinity())); } static BOOST_CONSTEXPR quantity_type quiet_NaN() { return(quantity_type::from_value(std::numeric_limits<T>::quiet_NaN())); } static BOOST_CONSTEXPR quantity_type signaling_NaN() { return(quantity_type::from_value(std::numeric_limits<T>::signaling_NaN())); } static BOOST_CONSTEXPR quantity_type denorm_min() { return(quantity_type::from_value(std::numeric_limits<T>::denorm_min())); } BOOST_STATIC_CONSTEXPR bool is_iec559 = std::numeric_limits<T>::is_iec559; BOOST_STATIC_CONSTEXPR bool is_bounded = std::numeric_limits<T>::is_bounded; BOOST_STATIC_CONSTEXPR bool is_modulo = std::numeric_limits<T>::is_modulo; BOOST_STATIC_CONSTEXPR bool traps = std::numeric_limits<T>::traps; BOOST_STATIC_CONSTEXPR bool tinyness_before = std::numeric_limits<T>::tinyness_before; #if defined(_STLP_STATIC_CONST_INIT_BUG) BOOST_STATIC_CONSTEXPR int has_denorm = std::numeric_limits<T>::has_denorm; BOOST_STATIC_CONSTEXPR int round_style = std::numeric_limits<T>::round_style; #else BOOST_STATIC_CONSTEXPR float_denorm_style has_denorm = std::numeric_limits<T>::has_denorm; BOOST_STATIC_CONSTEXPR float_round_style round_style = std::numeric_limits<T>::round_style; #endif }; } #endif // BOOST_UNITS_LIMITS_HPP