/* * Copyright Nick Thompson, 2017 * Use, modification and distribution are subject to the * Boost Software License, Version 1.0. (See accompanying file * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) * * Given N samples (t_i, y_i) which are irregularly spaced, this routine constructs an * interpolant s which is constructed in O(N) time, occupies O(N) space, and can be evaluated in O(N) time. * The interpolation is stable, unless one point is incredibly close to another, and the next point is incredibly far. * The measure of this stability is the "local mesh ratio", which can be queried from the routine. * Pictorially, the following t_i spacing is bad (has a high local mesh ratio) * || | | | | * and this t_i spacing is good (has a low local mesh ratio) * | | | | | | | | | | * * * If f is C^{d+2}, then the interpolant is O(h^(d+1)) accurate, where d is the interpolation order. * A disadvantage of this interpolant is that it does not reproduce rational functions; for example, 1/(1+x^2) is not interpolated exactly. * * References: * Floater, Michael S., and Kai Hormann. "Barycentric rational interpolation with no poles and high rates of approximation." * Numerische Mathematik 107.2 (2007): 315-331. * Press, William H., et al. "Numerical recipes third edition: the art of scientific computing." Cambridge University Press 32 (2007): 10013-2473. */ #ifndef BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_HPP #define BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_HPP #include <memory> #include <boost/math/interpolators/detail/barycentric_rational_detail.hpp> namespace boost{ namespace math{ namespace interpolators{ template<class Real> class barycentric_rational { public: barycentric_rational(const Real* const x, const Real* const y, size_t n, size_t approximation_order = 3); barycentric_rational(std::vector<Real>&& x, std::vector<Real>&& y, size_t approximation_order = 3); template <class InputIterator1, class InputIterator2> barycentric_rational(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order = 3, typename std::enable_if<!std::is_integral<InputIterator2>::value>::type* = nullptr); Real operator()(Real x) const; Real prime(Real x) const; std::vector<Real>&& return_x() { return m_imp->return_x(); } std::vector<Real>&& return_y() { return m_imp->return_y(); } private: std::shared_ptr<detail::barycentric_rational_imp<Real>> m_imp; }; template <class Real> barycentric_rational<Real>::barycentric_rational(const Real* const x, const Real* const y, size_t n, size_t approximation_order): m_imp(std::make_shared<detail::barycentric_rational_imp<Real>>(x, x + n, y, approximation_order)) { return; } template <class Real> barycentric_rational<Real>::barycentric_rational(std::vector<Real>&& x, std::vector<Real>&& y, size_t approximation_order): m_imp(std::make_shared<detail::barycentric_rational_imp<Real>>(std::move(x), std::move(y), approximation_order)) { return; } template <class Real> template <class InputIterator1, class InputIterator2> barycentric_rational<Real>::barycentric_rational(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order, typename std::enable_if<!std::is_integral<InputIterator2>::value>::type*) : m_imp(std::make_shared<detail::barycentric_rational_imp<Real>>(start_x, end_x, start_y, approximation_order)) { } template<class Real> Real barycentric_rational<Real>::operator()(Real x) const { return m_imp->operator()(x); } template<class Real> Real barycentric_rational<Real>::prime(Real x) const { return m_imp->prime(x); } }}} #endif