// Copyright Daniel Trebbien 2010. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or the copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GRAPH_STOER_WAGNER_MIN_CUT_HPP #define BOOST_GRAPH_STOER_WAGNER_MIN_CUT_HPP 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace detail { /** * \brief Performs a phase of the Stoer-Wagner min-cut algorithm * * Performs a phase of the Stoer-Wagner min-cut algorithm. * * As described by Stoer & Wagner (1997), a phase is simply a maximum * adjacency search (also called a maximum cardinality search), which * results in the selection of two vertices \em s and \em t, and, as a side * product, a minimum s-t cut of the input graph. Here, * the input graph is basically \p g, but some vertices are virtually * assigned to others as a way of viewing \p g as a graph with some sets of * vertices merged together. * * This implementation is a translation of pseudocode by Professor Uri * Zwick, School of Computer Science, Tel Aviv University. * * \pre \p g is a connected, undirected graph * \param[in] g the input graph * \param[in] assignments a read/write property map from each vertex to the * vertex that it is assigned to * \param[in] assignedVertices a list of vertices that are assigned to * others * \param[in] weights a readable property map from each edge to its * weight (a non-negative value) * \param[out] pq a keyed, updatable max-priority queue * \returns a tuple (\em s, \em t, \em w) of the "s" and * "t" of the minimum s-t cut and the * cut weight \em w of the minimum s-t cut. * \see http://www.cs.tau.ac.il/~zwick/grad-algo-08/gmc.pdf * * \author Daniel Trebbien * \date 2010-09-11 */ template < class UndirectedGraph, class VertexAssignmentMap, class WeightMap, class KeyedUpdatablePriorityQueue > boost::tuple< typename boost::graph_traits< UndirectedGraph >::vertex_descriptor, typename boost::graph_traits< UndirectedGraph >::vertex_descriptor, typename boost::property_traits< WeightMap >::value_type > stoer_wagner_phase(const UndirectedGraph& g, VertexAssignmentMap assignments, const std::set< typename boost::graph_traits< UndirectedGraph >::vertex_descriptor >& assignedVertices, WeightMap weights, KeyedUpdatablePriorityQueue& pq) { typedef typename boost::graph_traits< UndirectedGraph >::vertex_descriptor vertex_descriptor; typedef typename boost::property_traits< WeightMap >::value_type weight_type; BOOST_ASSERT(pq.empty()); typename KeyedUpdatablePriorityQueue::key_map keys = pq.keys(); BGL_FORALL_VERTICES_T(v, g, UndirectedGraph) { if (v == get(assignments, v)) { // foreach u \in V do put(keys, v, weight_type(0)); pq.push(v); } } BOOST_ASSERT(pq.size() >= 2); vertex_descriptor s = boost::graph_traits< UndirectedGraph >::null_vertex(); vertex_descriptor t = boost::graph_traits< UndirectedGraph >::null_vertex(); weight_type w; while (!pq.empty()) { // while PQ \neq {} do const vertex_descriptor u = pq.top(); // u = extractmax(PQ) w = get(keys, u); pq.pop(); s = t; t = u; BGL_FORALL_OUTEDGES_T(u, e, g, UndirectedGraph) { // foreach (u, v) \in E do const vertex_descriptor v = get(assignments, target(e, g)); if (pq.contains(v)) { // if v \in PQ then put(keys, v, get(keys, v) + get(weights, e)); // increasekey(PQ, v, wA(v) + w(u, v)) pq.update(v); } } typename std::set< vertex_descriptor >::const_iterator assignedVertexIt, assignedVertexEnd = assignedVertices.end(); for (assignedVertexIt = assignedVertices.begin(); assignedVertexIt != assignedVertexEnd; ++assignedVertexIt) { const vertex_descriptor uPrime = *assignedVertexIt; if (get(assignments, uPrime) == u) { BGL_FORALL_OUTEDGES_T(uPrime, e, g, UndirectedGraph) { // foreach (u, v) \in E do const vertex_descriptor v = get(assignments, target(e, g)); if (pq.contains(v)) { // if v \in PQ then put(keys, v, get(keys, v) + get(weights, e)); // increasekey(PQ, v, // wA(v) + w(u, v)) pq.update(v); } } } } } return boost::make_tuple(s, t, w); } /** * \brief Computes a min-cut of the input graph * * Computes a min-cut of the input graph using the Stoer-Wagner algorithm. * * \pre \p g is a connected, undirected graph * \pre pq.empty() * \param[in] g the input graph * \param[in] weights a readable property map from each edge to its weight * (a non-negative value) \param[out] parities a writable property map from * each vertex to a bool type object for distinguishing the two vertex sets * of the min-cut \param[out] assignments a read/write property map from * each vertex to a \c vertex_descriptor object. This map serves as work * space, and no particular meaning should be derived from property values * after completion of the algorithm. * \param[out] pq a keyed, updatable max-priority queue * \returns the cut weight of the min-cut * \see * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.6687&rep=rep1&type=pdf * \see * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.614&rep=rep1&type=pdf * * \author Daniel Trebbien * \date 2010-09-11 */ template < class UndirectedGraph, class WeightMap, class ParityMap, class VertexAssignmentMap, class KeyedUpdatablePriorityQueue, class IndexMap > typename boost::property_traits< WeightMap >::value_type stoer_wagner_min_cut(const UndirectedGraph& g, WeightMap weights, ParityMap parities, VertexAssignmentMap assignments, KeyedUpdatablePriorityQueue& pq, IndexMap index_map) { typedef typename boost::graph_traits< UndirectedGraph >::vertex_descriptor vertex_descriptor; typedef typename boost::property_traits< WeightMap >::value_type weight_type; typedef typename boost::graph_traits< UndirectedGraph >::vertices_size_type vertices_size_type; typedef typename boost::property_traits< ParityMap >::value_type parity_type; vertices_size_type n = num_vertices(g); std::set< vertex_descriptor > assignedVertices; // initialize `assignments` (all vertices are initially assigned to // themselves) BGL_FORALL_VERTICES_T(v, g, UndirectedGraph) { put(assignments, v, v); } vertex_descriptor s, t; weight_type bestW; boost::tie(s, t, bestW) = boost::detail::stoer_wagner_phase( g, assignments, assignedVertices, weights, pq); BOOST_ASSERT(s != t); BGL_FORALL_VERTICES_T(v, g, UndirectedGraph) { put(parities, v, parity_type(v == t ? 1 : 0)); } put(assignments, t, s); assignedVertices.insert(t); --n; for (; n >= 2; --n) { weight_type w; boost::tie(s, t, w) = boost::detail::stoer_wagner_phase( g, assignments, assignedVertices, weights, pq); BOOST_ASSERT(s != t); if (w < bestW) { BGL_FORALL_VERTICES_T(v, g, UndirectedGraph) { put(parities, v, parity_type(get(assignments, v) == t ? 1 : 0)); if (get(assignments, v) == t) // all vertices that were assigned to t are now // assigned to s put(assignments, v, s); } bestW = w; } else { BGL_FORALL_VERTICES_T(v, g, UndirectedGraph) { if (get(assignments, v) == t) // all vertices that were assigned to t are now // assigned to s put(assignments, v, s); } } put(assignments, t, s); assignedVertices.insert(t); } BOOST_ASSERT(pq.empty()); return bestW; } } // end `namespace detail` within `namespace boost` template < class UndirectedGraph, class WeightMap, class ParityMap, class VertexAssignmentMap, class KeyedUpdatablePriorityQueue, class IndexMap > typename boost::property_traits< WeightMap >::value_type stoer_wagner_min_cut( const UndirectedGraph& g, WeightMap weights, ParityMap parities, VertexAssignmentMap assignments, KeyedUpdatablePriorityQueue& pq, IndexMap index_map) { BOOST_CONCEPT_ASSERT((boost::IncidenceGraphConcept< UndirectedGraph >)); BOOST_CONCEPT_ASSERT((boost::VertexListGraphConcept< UndirectedGraph >)); typedef typename boost::graph_traits< UndirectedGraph >::vertex_descriptor vertex_descriptor; typedef typename boost::graph_traits< UndirectedGraph >::vertices_size_type vertices_size_type; typedef typename boost::graph_traits< UndirectedGraph >::edge_descriptor edge_descriptor; BOOST_CONCEPT_ASSERT((boost::Convertible< typename boost::graph_traits< UndirectedGraph >::directed_category, boost::undirected_tag >)); BOOST_CONCEPT_ASSERT( (boost::ReadablePropertyMapConcept< WeightMap, edge_descriptor >)); // typedef typename boost::property_traits::value_type // weight_type; BOOST_CONCEPT_ASSERT( (boost::WritablePropertyMapConcept< ParityMap, vertex_descriptor >)); // typedef typename boost::property_traits::value_type // parity_type; BOOST_CONCEPT_ASSERT( (boost::ReadWritePropertyMapConcept< VertexAssignmentMap, vertex_descriptor >)); BOOST_CONCEPT_ASSERT((boost::Convertible< vertex_descriptor, typename boost::property_traits< VertexAssignmentMap >::value_type >)); BOOST_CONCEPT_ASSERT( (boost::KeyedUpdatableQueueConcept< KeyedUpdatablePriorityQueue >)); vertices_size_type n = num_vertices(g); if (n < 2) throw boost::bad_graph( "the input graph must have at least two vertices."); else if (!pq.empty()) throw std::invalid_argument( "the max-priority queue must be empty initially."); return detail::stoer_wagner_min_cut( g, weights, parities, assignments, pq, index_map); } namespace graph { namespace detail { template < class UndirectedGraph, class WeightMap > struct stoer_wagner_min_cut_impl { typedef typename boost::property_traits< WeightMap >::value_type result_type; template < typename ArgPack > result_type operator()(const UndirectedGraph& g, WeightMap weights, const ArgPack& arg_pack) const { using namespace boost::graph::keywords; typedef typename boost::graph_traits< UndirectedGraph >::vertex_descriptor vertex_descriptor; typedef typename boost::property_traits< WeightMap >::value_type weight_type; typedef boost::detail::make_priority_queue_from_arg_pack_gen< boost::graph::keywords::tag::max_priority_queue, weight_type, vertex_descriptor, std::greater< weight_type > > gen_type; gen_type gen( choose_param(get_param(arg_pack, boost::distance_zero_t()), weight_type(0))); typename boost::result_of< gen_type( const UndirectedGraph&, const ArgPack&) >::type pq = gen(g, arg_pack); boost::dummy_property_map dummy_prop; return boost::stoer_wagner_min_cut(g, weights, arg_pack[_parity_map | dummy_prop], boost::detail::make_property_map_from_arg_pack_gen< tag::vertex_assignment_map, vertex_descriptor >( vertex_descriptor())(g, arg_pack), pq, boost::detail::override_const_property( arg_pack, _vertex_index_map, g, vertex_index)); } }; } BOOST_GRAPH_MAKE_FORWARDING_FUNCTION(stoer_wagner_min_cut, 2, 4) } // Named parameter interface BOOST_GRAPH_MAKE_OLD_STYLE_PARAMETER_FUNCTION(stoer_wagner_min_cut, 2) namespace graph { // version without IndexMap kept for backwards compatibility // (but requires vertex_index_t to be defined in the graph) // Place after the macro to avoid compilation errors template < class UndirectedGraph, class WeightMap, class ParityMap, class VertexAssignmentMap, class KeyedUpdatablePriorityQueue > typename boost::property_traits< WeightMap >::value_type stoer_wagner_min_cut(const UndirectedGraph& g, WeightMap weights, ParityMap parities, VertexAssignmentMap assignments, KeyedUpdatablePriorityQueue& pq) { return stoer_wagner_min_cut( g, weights, parities, assignments, pq, get(vertex_index, g)); } } // end `namespace graph` } // end `namespace boost` #include #endif // !BOOST_GRAPH_STOER_WAGNER_MIN_CUT_HPP