// // MessagePack for C++ deserializing routine // // Copyright (C) 2016-2017 KONDO Takatoshi // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // #ifndef MSGPACK_V2_PARSE_HPP #define MSGPACK_V2_PARSE_HPP #include "rpc/msgpack/unpack_decl.hpp" #include "rpc/msgpack/v2/create_object_visitor.hpp" namespace clmdep_msgpack { /// @cond MSGPACK_API_VERSION_NAMESPACE(v2) { /// @endcond namespace detail { template class context { public: context() :m_trail(0), m_cs(MSGPACK_CS_HEADER) { } void init() { m_cs = MSGPACK_CS_HEADER; m_trail = 0; m_stack.clear(); holder().visitor().init(); } parse_return execute(const char* data, std::size_t len, std::size_t& off); private: template static uint32_t next_cs(T p) { return static_cast(*p) & 0x1f; } VisitorHolder& holder() { return static_cast(*this); } template parse_return start_aggregate( StartVisitor const& sv, EndVisitor const& ev, const char* load_pos, std::size_t& off) { typename value::type size; load(size, load_pos); ++m_current; if (size == 0) { if (!sv(size)) { off = m_current - m_start; return PARSE_STOP_VISITOR; } if (!ev()) { off = m_current - m_start; return PARSE_STOP_VISITOR; } parse_return ret = m_stack.consume(holder()); if (ret != PARSE_CONTINUE) { off = m_current - m_start; return ret; } } else { if (!sv(size)) { off = m_current - m_start; return PARSE_STOP_VISITOR; } parse_return ret = m_stack.push(holder(), sv.type(), static_cast(size)); if (ret != PARSE_CONTINUE) { off = m_current - m_start; return ret; } } m_cs = MSGPACK_CS_HEADER; return PARSE_CONTINUE; } parse_return after_visit_proc(bool visit_result, std::size_t& off) { ++m_current; if (!visit_result) { off = m_current - m_start; return PARSE_STOP_VISITOR; } parse_return ret = m_stack.consume(holder()); if (ret != PARSE_CONTINUE) { off = m_current - m_start; } m_cs = MSGPACK_CS_HEADER; return ret; } struct array_sv { array_sv(VisitorHolder& visitor_holder):m_visitor_holder(visitor_holder) {} bool operator()(uint32_t size) const { return m_visitor_holder.visitor().start_array(size); } msgpack_container_type type() const { return MSGPACK_CT_ARRAY_ITEM; } private: VisitorHolder& m_visitor_holder; }; struct array_ev { array_ev(VisitorHolder& visitor_holder):m_visitor_holder(visitor_holder) {} bool operator()() const { return m_visitor_holder.visitor().end_array(); } private: VisitorHolder& m_visitor_holder; }; struct map_sv { map_sv(VisitorHolder& visitor_holder):m_visitor_holder(visitor_holder) {} bool operator()(uint32_t size) const { return m_visitor_holder.visitor().start_map(size); } msgpack_container_type type() const { return MSGPACK_CT_MAP_KEY; } private: VisitorHolder& m_visitor_holder; }; struct map_ev { map_ev(VisitorHolder& visitor_holder):m_visitor_holder(visitor_holder) {} bool operator()() const { return m_visitor_holder.visitor().end_map(); } private: VisitorHolder& m_visitor_holder; }; struct unpack_stack { struct stack_elem { stack_elem(msgpack_container_type type, uint32_t rest):m_type(type), m_rest(rest) {} msgpack_container_type m_type; uint32_t m_rest; }; unpack_stack() { m_stack.reserve(MSGPACK_EMBED_STACK_SIZE); } parse_return push(VisitorHolder& visitor_holder, msgpack_container_type type, uint32_t rest) { m_stack.push_back(stack_elem(type, rest)); switch (type) { case MSGPACK_CT_ARRAY_ITEM: return visitor_holder.visitor().start_array_item() ? PARSE_CONTINUE : PARSE_STOP_VISITOR; case MSGPACK_CT_MAP_KEY: return visitor_holder.visitor().start_map_key() ? PARSE_CONTINUE : PARSE_STOP_VISITOR; case MSGPACK_CT_MAP_VALUE: assert(0); return PARSE_STOP_VISITOR; } assert(0); return PARSE_STOP_VISITOR; } parse_return consume(VisitorHolder& visitor_holder) { while (!m_stack.empty()) { stack_elem& e = m_stack.back(); switch (e.m_type) { case MSGPACK_CT_ARRAY_ITEM: if (!visitor_holder.visitor().end_array_item()) return PARSE_STOP_VISITOR; if (--e.m_rest == 0) { m_stack.pop_back(); if (!visitor_holder.visitor().end_array()) return PARSE_STOP_VISITOR; } else { if (!visitor_holder.visitor().start_array_item()) return PARSE_STOP_VISITOR; return PARSE_CONTINUE; } break; case MSGPACK_CT_MAP_KEY: if (!visitor_holder.visitor().end_map_key()) return PARSE_STOP_VISITOR; if (!visitor_holder.visitor().start_map_value()) return PARSE_STOP_VISITOR; e.m_type = MSGPACK_CT_MAP_VALUE; return PARSE_CONTINUE; case MSGPACK_CT_MAP_VALUE: if (!visitor_holder.visitor().end_map_value()) return PARSE_STOP_VISITOR; if (--e.m_rest == 0) { m_stack.pop_back(); if (!visitor_holder.visitor().end_map()) return PARSE_STOP_VISITOR; } else { e.m_type = MSGPACK_CT_MAP_KEY; if (!visitor_holder.visitor().start_map_key()) return PARSE_STOP_VISITOR; return PARSE_CONTINUE; } break; } } return PARSE_SUCCESS; } bool empty() const { return m_stack.empty(); } void clear() { m_stack.clear(); } private: std::vector m_stack; }; char const* m_start; char const* m_current; std::size_t m_trail; uint32_t m_cs; uint32_t m_num_elements; unpack_stack m_stack; }; template inline void check_ext_size(std::size_t /*size*/) { } template <> inline void check_ext_size<4>(std::size_t size) { if (size == 0xffffffff) throw clmdep_msgpack::ext_size_overflow("ext size overflow"); } template inline parse_return context::execute(const char* data, std::size_t len, std::size_t& off) { assert(len >= off); m_start = data; m_current = data + off; const char* const pe = data + len; const char* n = MSGPACK_NULLPTR; clmdep_msgpack::object obj; if(m_current == pe) { off = m_current - m_start; return PARSE_CONTINUE; } bool fixed_trail_again = false; do { if (m_cs == MSGPACK_CS_HEADER) { fixed_trail_again = false; int selector = *reinterpret_cast(m_current); if (0x00 <= selector && selector <= 0x7f) { // Positive Fixnum uint8_t tmp = *reinterpret_cast(m_current); bool visret = holder().visitor().visit_positive_integer(tmp); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else if(0xe0 <= selector && selector <= 0xff) { // Negative Fixnum int8_t tmp = *reinterpret_cast(m_current); bool visret = holder().visitor().visit_negative_integer(tmp); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else if (0xc4 <= selector && selector <= 0xdf) { const uint32_t trail[] = { 1, // bin 8 0xc4 2, // bin 16 0xc5 4, // bin 32 0xc6 1, // ext 8 0xc7 2, // ext 16 0xc8 4, // ext 32 0xc9 4, // float 32 0xca 8, // float 64 0xcb 1, // uint 8 0xcc 2, // uint 16 0xcd 4, // uint 32 0xce 8, // uint 64 0xcf 1, // int 8 0xd0 2, // int 16 0xd1 4, // int 32 0xd2 8, // int 64 0xd3 2, // fixext 1 0xd4 3, // fixext 2 0xd5 5, // fixext 4 0xd6 9, // fixext 8 0xd7 17,// fixext 16 0xd8 1, // str 8 0xd9 2, // str 16 0xda 4, // str 32 0xdb 2, // array 16 0xdc 4, // array 32 0xdd 2, // map 16 0xde 4, // map 32 0xdf }; m_trail = trail[selector - 0xc4]; m_cs = next_cs(m_current); fixed_trail_again = true; } else if(0xa0 <= selector && selector <= 0xbf) { // FixStr m_trail = static_cast(*m_current) & 0x1f; if(m_trail == 0) { bool visret = holder().visitor().visit_str(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { m_cs = MSGPACK_ACS_STR_VALUE; fixed_trail_again = true; } } else if(0x90 <= selector && selector <= 0x9f) { // FixArray parse_return ret = start_aggregate(array_sv(holder()), array_ev(holder()), m_current, off); if (ret != PARSE_CONTINUE) return ret; } else if(0x80 <= selector && selector <= 0x8f) { // FixMap parse_return ret = start_aggregate(map_sv(holder()), map_ev(holder()), m_current, off); if (ret != PARSE_CONTINUE) return ret; } else if(selector == 0xc2) { // false bool visret = holder().visitor().visit_boolean(false); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else if(selector == 0xc3) { // true bool visret = holder().visitor().visit_boolean(true); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else if(selector == 0xc0) { // nil bool visret = holder().visitor().visit_nil(); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { off = m_current - m_start; holder().visitor().parse_error(off - 1, off); return PARSE_PARSE_ERROR; } // end MSGPACK_CS_HEADER } if (m_cs != MSGPACK_CS_HEADER || fixed_trail_again) { if (fixed_trail_again) { ++m_current; fixed_trail_again = false; } if(static_cast(pe - m_current) < m_trail) { off = m_current - m_start; return PARSE_CONTINUE; } n = m_current; m_current += m_trail - 1; switch(m_cs) { //case MSGPACK_CS_ //case MSGPACK_CS_ case MSGPACK_CS_FLOAT: { union { uint32_t i; float f; } mem; load(mem.i, n); bool visret = holder().visitor().visit_float32(mem.f); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_DOUBLE: { union { uint64_t i; double f; } mem; load(mem.i, n); #if defined(TARGET_OS_IPHONE) // ok #elif defined(__arm__) && !(__ARM_EABI__) // arm-oabi // https://github.com/msgpack/msgpack-perl/pull/1 mem.i = (mem.i & 0xFFFFFFFFUL) << 32UL | (mem.i >> 32UL); #endif bool visret = holder().visitor().visit_float64(mem.f); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_UINT_8: { uint8_t tmp; load(tmp, n); bool visret = holder().visitor().visit_positive_integer(tmp); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_UINT_16: { uint16_t tmp; load(tmp, n); bool visret = holder().visitor().visit_positive_integer(tmp); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_UINT_32: { uint32_t tmp; load(tmp, n); bool visret = holder().visitor().visit_positive_integer(tmp); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_UINT_64: { uint64_t tmp; load(tmp, n); bool visret = holder().visitor().visit_positive_integer(tmp); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_INT_8: { int8_t tmp; load(tmp, n); bool visret = holder().visitor().visit_negative_integer(tmp); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_INT_16: { int16_t tmp; load(tmp, n); bool visret = holder().visitor().visit_negative_integer(tmp); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_INT_32: { int32_t tmp; load(tmp, n); bool visret = holder().visitor().visit_negative_integer(tmp); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_INT_64: { int64_t tmp; load(tmp, n); bool visret = holder().visitor().visit_negative_integer(tmp); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_FIXEXT_1: { bool visret = holder().visitor().visit_ext(n, 1+1); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_FIXEXT_2: { bool visret = holder().visitor().visit_ext(n, 2+1); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_FIXEXT_4: { bool visret = holder().visitor().visit_ext(n, 4+1); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_FIXEXT_8: { bool visret = holder().visitor().visit_ext(n, 8+1); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_FIXEXT_16: { bool visret = holder().visitor().visit_ext(n, 16+1); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_STR_8: { uint8_t tmp; load(tmp, n); m_trail = tmp; if(m_trail == 0) { bool visret = holder().visitor().visit_str(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { m_cs = MSGPACK_ACS_STR_VALUE; fixed_trail_again = true; } } break; case MSGPACK_CS_BIN_8: { uint8_t tmp; load(tmp, n); m_trail = tmp; if(m_trail == 0) { bool visret = holder().visitor().visit_bin(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { m_cs = MSGPACK_ACS_BIN_VALUE; fixed_trail_again = true; } } break; case MSGPACK_CS_EXT_8: { uint8_t tmp; load(tmp, n); m_trail = tmp + 1; if(m_trail == 0) { bool visret = holder().visitor().visit_ext(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { m_cs = MSGPACK_ACS_EXT_VALUE; fixed_trail_again = true; } } break; case MSGPACK_CS_STR_16: { uint16_t tmp; load(tmp, n); m_trail = tmp; if(m_trail == 0) { bool visret = holder().visitor().visit_str(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { m_cs = MSGPACK_ACS_STR_VALUE; fixed_trail_again = true; } } break; case MSGPACK_CS_BIN_16: { uint16_t tmp; load(tmp, n); m_trail = tmp; if(m_trail == 0) { bool visret = holder().visitor().visit_bin(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { m_cs = MSGPACK_ACS_BIN_VALUE; fixed_trail_again = true; } } break; case MSGPACK_CS_EXT_16: { uint16_t tmp; load(tmp, n); m_trail = tmp + 1; if(m_trail == 0) { bool visret = holder().visitor().visit_ext(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { m_cs = MSGPACK_ACS_EXT_VALUE; fixed_trail_again = true; } } break; case MSGPACK_CS_STR_32: { uint32_t tmp; load(tmp, n); m_trail = tmp; if(m_trail == 0) { bool visret = holder().visitor().visit_str(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { m_cs = MSGPACK_ACS_STR_VALUE; fixed_trail_again = true; } } break; case MSGPACK_CS_BIN_32: { uint32_t tmp; load(tmp, n); m_trail = tmp; if(m_trail == 0) { bool visret = holder().visitor().visit_bin(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { m_cs = MSGPACK_ACS_BIN_VALUE; fixed_trail_again = true; } } break; case MSGPACK_CS_EXT_32: { uint32_t tmp; load(tmp, n); check_ext_size(tmp); m_trail = tmp; ++m_trail; if(m_trail == 0) { bool visret = holder().visitor().visit_ext(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } else { m_cs = MSGPACK_ACS_EXT_VALUE; fixed_trail_again = true; } } break; case MSGPACK_ACS_STR_VALUE: { bool visret = holder().visitor().visit_str(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_ACS_BIN_VALUE: { bool visret = holder().visitor().visit_bin(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_ACS_EXT_VALUE: { bool visret = holder().visitor().visit_ext(n, static_cast(m_trail)); parse_return upr = after_visit_proc(visret, off); if (upr != PARSE_CONTINUE) return upr; } break; case MSGPACK_CS_ARRAY_16: { parse_return ret = start_aggregate(array_sv(holder()), array_ev(holder()), n, off); if (ret != PARSE_CONTINUE) return ret; } break; case MSGPACK_CS_ARRAY_32: { parse_return ret = start_aggregate(array_sv(holder()), array_ev(holder()), n, off); if (ret != PARSE_CONTINUE) return ret; } break; case MSGPACK_CS_MAP_16: { parse_return ret = start_aggregate(map_sv(holder()), map_ev(holder()), n, off); if (ret != PARSE_CONTINUE) return ret; } break; case MSGPACK_CS_MAP_32: { parse_return ret = start_aggregate(map_sv(holder()), map_ev(holder()), n, off); if (ret != PARSE_CONTINUE) return ret; } break; default: off = m_current - m_start; holder().visitor().parse_error(n - m_start - 1, n - m_start); return PARSE_PARSE_ERROR; } } } while(m_current != pe); off = m_current - m_start; return PARSE_CONTINUE; } } // detail /// Parsing class for a stream deserialization. template class parser : public detail::context { typedef parser this_type; typedef detail::context context_type; public: /// Constructor /** * @param referenced If the unpacked object contains reference of the buffer, then set as true, otherwise false. * @param f A judging function that clmdep_msgpack::object refer to the buffer. * @param user_data This parameter is passed to f. * @param initial_buffer_size The memory size to allocate when unpacker is constructed. * @param limit The size limit information of clmdep_msgpack::object. * */ parser(ReferencedBufferHook& hook, std::size_t initial_buffer_size = MSGPACK_UNPACKER_INIT_BUFFER_SIZE); #if !defined(MSGPACK_USE_CPP03) parser(this_type&& other); this_type& operator=(this_type&& other); #endif // !defined(MSGPACK_USE_CPP03) ~parser(); public: /// Reserve a buffer memory. /** * @param size The size of allocating memory. * * After returning this function, buffer_capacity() returns at least 'size'. * See: * https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer */ void reserve_buffer(std::size_t size = MSGPACK_UNPACKER_RESERVE_SIZE); /// Get buffer pointer. /** * You need to care about the memory is enable between buffer() and buffer() + buffer_capacity() * See: * https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer */ char* buffer(); /// Get buffer capacity. /** * @return The memory size that you can write. * * See: * https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer */ std::size_t buffer_capacity() const; /// Notify a buffer consumed information to clmdep_msgpack::unpacker. /** * @param size The size of memory that you consumed. * * After copying the data to the memory that is pointed by buffer(), you need to call the * function to notify how many bytes are consumed. Then you can call next() functions. * * See: * https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer */ void buffer_consumed(std::size_t size); /// Unpack one clmdep_msgpack::object. /** * * * @return If one clmdep_msgpack::object is unpacked, then return true, if clmdep_msgpack::object is incomplete * and additional data is required, then return false. If data format is invalid, throw * clmdep_msgpack::parse_error. * * See: * https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer */ bool next(); /// Get message size. /** * @return Returns parsed_size() + nonparsed_size() */ std::size_t message_size() const; public: /// Get parsed message size. /** * @return Parsed message size. * * This function is usable when non-MessagePack message follows after * MessagePack message. */ std::size_t parsed_size() const; /// Get the address that is not parsed in the buffer. /** * @return Address of the buffer that is not parsed * * This function is usable when non-MessagePack message follows after * MessagePack message. */ char* nonparsed_buffer(); /// Get the size of the buffer that is not parsed. /** * @return Size of the buffer that is not parsed * * This function is usable when non-MessagePack message follows after * MessagePack message. */ std::size_t nonparsed_size() const; /// Skip the specified size of non-parsed buffer. /** * @param size to skip * * Note that the `size' argument must be smaller than nonparsed_size(). * This function is usable when non-MessagePack message follows after * MessagePack message. */ void skip_nonparsed_buffer(std::size_t size); /// Remove nonparsed buffer and reset the current position as a new start point. /** * This function is usable when non-MessagePack message follows after * MessagePack message. */ void remove_nonparsed_buffer(); void reset(); protected: char* get_raw_buffer() { return m_buffer; } private: void expand_buffer(std::size_t size); parse_return execute_imp(); private: char* m_buffer; std::size_t m_used; std::size_t m_free; std::size_t m_off; std::size_t m_parsed; std::size_t m_initial_buffer_size; ReferencedBufferHook& m_referenced_buffer_hook; #if defined(MSGPACK_USE_CPP03) private: parser(const this_type&); this_type& operator=(const this_type&); #else // defined(MSGPACK_USE_CPP03) public: parser(const this_type&) = delete; this_type& operator=(const this_type&) = delete; #endif // defined(MSGPACK_USE_CPP03) }; template inline parser::parser( ReferencedBufferHook& hook, std::size_t initial_buffer_size) :m_referenced_buffer_hook(hook) { if(initial_buffer_size < COUNTER_SIZE) { initial_buffer_size = COUNTER_SIZE; } char* buffer = static_cast(::malloc(initial_buffer_size)); if(!buffer) { throw std::bad_alloc(); } m_buffer = buffer; m_used = COUNTER_SIZE; m_free = initial_buffer_size - m_used; m_off = COUNTER_SIZE; m_parsed = 0; m_initial_buffer_size = initial_buffer_size; detail::init_count(m_buffer); } #if !defined(MSGPACK_USE_CPP03) // Move constructor and move assignment operator template inline parser::parser(this_type&& other) :context_type(std::move(other)), m_buffer(other.m_buffer), m_used(other.m_used), m_free(other.m_free), m_off(other.m_off), m_parsed(other.m_parsed), m_initial_buffer_size(other.m_initial_buffer_size), m_referenced_buffer_hook(other.m_referenced_buffer_hook) { other.m_buffer = MSGPACK_NULLPTR; other.m_used = 0; other.m_free = 0; other.m_off = 0; other.m_parsed = 0; } template inline parser& parser::operator=(this_type&& other) { this->~parser(); new (this) this_type(std::move(other)); return *this; } #endif // !defined(MSGPACK_USE_CPP03) template inline parser::~parser() { // These checks are required for move operations. if (m_buffer) detail::decr_count(m_buffer); } template inline void parser::reserve_buffer(std::size_t size) { if(m_free >= size) return; expand_buffer(size); } template inline void parser::expand_buffer(std::size_t size) { if(m_used == m_off && detail::get_count(m_buffer) == 1 && !static_cast(*this).visitor().referenced()) { // rewind buffer m_free += m_used - COUNTER_SIZE; m_used = COUNTER_SIZE; m_off = COUNTER_SIZE; if(m_free >= size) return; } if(m_off == COUNTER_SIZE) { std::size_t next_size = (m_used + m_free) * 2; // include COUNTER_SIZE while(next_size < size + m_used) { std::size_t tmp_next_size = next_size * 2; if (tmp_next_size <= next_size) { next_size = size + m_used; break; } next_size = tmp_next_size; } char* tmp = static_cast(::realloc(m_buffer, next_size)); if(!tmp) { throw std::bad_alloc(); } m_buffer = tmp; m_free = next_size - m_used; } else { std::size_t next_size = m_initial_buffer_size; // include COUNTER_SIZE std::size_t not_parsed = m_used - m_off; while(next_size < size + not_parsed + COUNTER_SIZE) { std::size_t tmp_next_size = next_size * 2; if (tmp_next_size <= next_size) { next_size = size + not_parsed + COUNTER_SIZE; break; } next_size = tmp_next_size; } char* tmp = static_cast(::malloc(next_size)); if(!tmp) { throw std::bad_alloc(); } detail::init_count(tmp); std::memcpy(tmp+COUNTER_SIZE, m_buffer + m_off, not_parsed); if(static_cast(*this).referenced()) { try { m_referenced_buffer_hook(m_buffer); } catch (...) { ::free(tmp); throw; } static_cast(*this).set_referenced(false); } else { detail::decr_count(m_buffer); } m_buffer = tmp; m_used = not_parsed + COUNTER_SIZE; m_free = next_size - m_used; m_off = COUNTER_SIZE; } } template inline char* parser::buffer() { return m_buffer + m_used; } template inline std::size_t parser::buffer_capacity() const { return m_free; } template inline void parser::buffer_consumed(std::size_t size) { m_used += size; m_free -= size; } template inline bool parser::next() { parse_return ret = execute_imp(); return ret == PARSE_SUCCESS; } template inline parse_return parser::execute_imp() { std::size_t off = m_off; parse_return ret = context_type::execute(m_buffer, m_used, m_off); if(m_off > off) { m_parsed += m_off - off; } return ret; } template inline void parser::reset() { context_type::init(); // don't reset referenced flag m_parsed = 0; } template inline std::size_t parser::message_size() const { return m_parsed - m_off + m_used; } template inline std::size_t parser::parsed_size() const { return m_parsed; } template inline char* parser::nonparsed_buffer() { return m_buffer + m_off; } template inline std::size_t parser::nonparsed_size() const { return m_used - m_off; } template inline void parser::skip_nonparsed_buffer(std::size_t size) { m_off += size; } template inline void parser::remove_nonparsed_buffer() { m_used = m_off; } template inline bool parse(const char* data, size_t len, size_t& off, Visitor& v) { parse_return ret = detail::parse_imp(data, len, off, v); return ret == PARSE_SUCCESS || ret == PARSE_EXTRA_BYTES; } template inline bool parse(const char* data, size_t len, Visitor& v) { std::size_t off = 0; return parse(data, len, off, v); } namespace detail { template struct parse_helper : context > { parse_helper(Visitor& v):m_visitor(v) {} parse_return execute(const char* data, std::size_t len, std::size_t& off) { return context >::execute(data, len, off); } Visitor& visitor() const { return m_visitor; } Visitor& m_visitor; }; template inline parse_return parse_imp(const char* data, size_t len, size_t& off, Visitor& v) { std::size_t noff = off; if(len <= noff) { // FIXME v.insufficient_bytes(noff, noff); return PARSE_CONTINUE; } detail::parse_helper h(v); parse_return ret = h.execute(data, len, noff); switch (ret) { case PARSE_CONTINUE: off = noff; v.insufficient_bytes(noff - 1, noff); return ret; case PARSE_SUCCESS: off = noff; if(noff < len) { return PARSE_EXTRA_BYTES; } return ret; default: return ret; } } } // detail /// @cond } // MSGPACK_API_VERSION_NAMESPACE(v2) /// @endcond } // namespace clmdep_msgpack #endif // MSGPACK_V2_PARSE_HPP