// Boost.Geometry // Copyright (c) 2021, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Licensed under the Boost Software License version 1.0. // http://www.boost.org/users/license.html #ifndef BOOST_GEOMETRY_STRATEGY_GEOGRAPHIC_AREA_BOX_HPP #define BOOST_GEOMETRY_STRATEGY_GEOGRAPHIC_AREA_BOX_HPP #include #include #include #include #include namespace boost { namespace geometry { namespace strategy { namespace area { // Based on the approach for spherical coordinate system: // https://math.stackexchange.com/questions/131735/surface-element-in-spherical-coordinates // http://www.cs.cmu.edu/afs/cs/academic/class/16823-s16/www/pdfs/appearance-modeling-3.pdf // https://www.astronomyclub.xyz/celestial-sphere-2/solid-angle-on-the-celestial-sphere.html // https://mathworld.wolfram.com/SolidAngle.html // https://en.wikipedia.org/wiki/Spherical_coordinate_system // and equations for spheroid: // https://en.wikipedia.org/wiki/Geographic_coordinate_conversion // https://en.wikipedia.org/wiki/Meridian_arc // Note that the equations use geodetic latitudes so we do not have to convert them. // assume(y_max > y_min); // assume(x_max > x_min); // M: a*(1-e^2) / (1-e^2*sin(y)^2)^(3/2); // N: a / sqrt(1-e^2*sin(y)^2); // O: N*cos(y)*M; // tellsimp(log(abs(e*sin(y_min)+1)), p_min); // tellsimp(log(abs(e*sin(y_min)-1)), m_min); // tellsimp(log(abs(e*sin(y_max)+1)), p_max); // tellsimp(log(abs(e*sin(y_max)-1)), m_max); // S: integrate(integrate(O, y, y_min, y_max), x, x_min, x_max); // combine(S); // // An alternative solution to the above formula was suggested by Charles Karney // https://github.com/boostorg/geometry/pull/832 // The following are formulas for area of a box defined by the equator and some latitude, // not arbitrary box. // For e^2 > 0 // dlambda*b^2*sin(phi)/2*(1/(1-e^2*sin(phi)^2) + atanh(e*sin(phi))/(e*sin(phi))) // For e^2 < 0 // dlambda*b^2*sin(phi)/2*(1/(1-e^2*sin(phi)^2) + atan(ea*sin(phi))/(ea*sin(phi))) // where ea = sqrt(-e^2) template < typename Spheroid = srs::spheroid, typename CalculationType = void > class geographic_box { public: template struct result_type : strategy::area::detail::result_type < Box, CalculationType > {}; geographic_box() = default; explicit geographic_box(Spheroid const& spheroid) : m_spheroid(spheroid) {} template inline auto apply(Box const& box) const { typedef typename result_type::type return_type; return_type const c0 = 0; return_type x_min = get_as_radian(box); // lon return_type y_min = get_as_radian(box); // lat return_type x_max = get_as_radian(box); return_type y_max = get_as_radian(box); math::normalize_spheroidal_box_coordinates(x_min, y_min, x_max, y_max); if (x_min == x_max || y_max == y_min) { return c0; } return_type const e2 = formula::eccentricity_sqr(m_spheroid); return_type const x_diff = x_max - x_min; return_type const sin_y_min = sin(y_min); return_type const sin_y_max = sin(y_max); if (math::equals(e2, c0)) { // spherical formula return_type const a = get_radius<0>(m_spheroid); return x_diff * (sin_y_max - sin_y_min) * a * a; } return_type const c1 = 1; return_type const c2 = 2; return_type const b = get_radius<2>(m_spheroid); /* return_type const c4 = 4; return_type const e = math::sqrt(e2); return_type const p_min = log(math::abs(e * sin_y_min + c1)); return_type const p_max = log(math::abs(e * sin_y_max + c1)); return_type const m_min = log(math::abs(e * sin_y_min - c1)); return_type const m_max = log(math::abs(e * sin_y_max - c1)); return_type const n_min = e * sin_y_min * sin_y_min; return_type const n_max = e * sin_y_max * sin_y_max; return_type const d_min = e * n_min - c1; return_type const d_max = e * n_max - c1; // NOTE: For equal latitudes the original formula generated by maxima may give negative // result. It's caused by the order of operations, so here they're rearranged for // symmetry. return_type const comp0 = (p_min - m_min) / (c4 * e * d_min); return_type const comp1 = sin_y_min / (c2 * d_min); return_type const comp2 = n_min * (m_min - p_min) / (c4 * d_min); return_type const comp3 = (p_max - m_max) / (c4 * e * d_max); return_type const comp4 = sin_y_max / (c2 * d_max); return_type const comp5 = n_max * (m_max - p_max) / (c4 * d_max); return_type const comp02 = comp0 + comp1 + comp2; return_type const comp35 = comp3 + comp4 + comp5; return b * b * x_diff * (comp02 - comp35); */ return_type const comp0_min = c1 / (c1 - e2 * sin_y_min * sin_y_min); return_type const comp0_max = c1 / (c1 - e2 * sin_y_max * sin_y_max); // NOTE: For latitudes equal to 0 the original formula returns NAN return_type comp1_min = 0, comp1_max = 0; if (e2 > c0) { return_type const e = math::sqrt(e2); return_type const e_sin_y_min = e * sin_y_min; return_type const e_sin_y_max = e * sin_y_max; comp1_min = e_sin_y_min == c0 ? c1 : atanh(e_sin_y_min) / e_sin_y_min; comp1_max = e_sin_y_max == c0 ? c1 : atanh(e_sin_y_max) / e_sin_y_max; } else { return_type const ea = math::sqrt(-e2); return_type const ea_sin_y_min = ea * sin_y_min; return_type const ea_sin_y_max = ea * sin_y_max; comp1_min = ea_sin_y_min == c0 ? c1 : atan(ea_sin_y_min) / ea_sin_y_min; comp1_max = ea_sin_y_max == c0 ? c1 : atan(ea_sin_y_max) / ea_sin_y_max; } return_type const comp01_min = sin_y_min * (comp0_min + comp1_min); return_type const comp01_max = sin_y_max * (comp0_max + comp1_max); return b * b * x_diff * (comp01_max - comp01_min) / c2; } Spheroid model() const { return m_spheroid; } private: Spheroid m_spheroid; }; }} // namespace strategy::area }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGY_GEOGRAPHIC_AREA_BOX_HPP