// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2015 Bruno Lalande, Paris, France. // Copyright (c) 2009-2015 Mateusz Loskot, London, UK. // This file was modified by Oracle on 2015-2021. // Modifications copyright (c) 2015-2021, Oracle and/or its affiliates. // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGY_CARTESIAN_SIDE_BY_TRIANGLE_HPP #define BOOST_GEOMETRY_STRATEGY_CARTESIAN_SIDE_BY_TRIANGLE_HPP #include #include #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace strategy { namespace side { /*! \brief Check at which side of a segment a point lies: left of segment (> 0), right of segment (< 0), on segment (0) \ingroup strategies \tparam CalculationType \tparam_calculation */ template class side_by_triangle { template struct eps_policy { eps_policy() {} template eps_policy(Type const& a, Type const& b, Type const& c, Type const& d) : policy(a, b, c, d) {} Policy policy; }; struct eps_empty { eps_empty() {} template eps_empty(Type const&, Type const&, Type const&, Type const&) {} }; public : using cs_tag = cartesian_tag; // Template member function, because it is not always trivial // or convenient to explicitly mention the typenames in the // strategy-struct itself. // Types can be all three different. Therefore it is // not implemented (anymore) as "segment" template < typename CoordinateType, typename PromotedType, typename P1, typename P2, typename P, typename EpsPolicy > static inline PromotedType side_value(P1 const& p1, P2 const& p2, P const& p, EpsPolicy & eps_policy) { CoordinateType const x = get<0>(p); CoordinateType const y = get<1>(p); CoordinateType const sx1 = get<0>(p1); CoordinateType const sy1 = get<1>(p1); CoordinateType const sx2 = get<0>(p2); CoordinateType const sy2 = get<1>(p2); PromotedType const dx = sx2 - sx1; PromotedType const dy = sy2 - sy1; PromotedType const dpx = x - sx1; PromotedType const dpy = y - sy1; eps_policy = EpsPolicy(dx, dy, dpx, dpy); return geometry::detail::determinant ( dx, dy, dpx, dpy ); } template < typename CoordinateType, typename PromotedType, typename P1, typename P2, typename P > static inline PromotedType side_value(P1 const& p1, P2 const& p2, P const& p) { eps_empty dummy; return side_value(p1, p2, p, dummy); } template < typename CoordinateType, typename PromotedType, bool AreAllIntegralCoordinates > struct compute_side_value { template static inline PromotedType apply(P1 const& p1, P2 const& p2, P const& p, EpsPolicy & epsp) { return side_value(p1, p2, p, epsp); } }; template struct compute_side_value { template static inline PromotedType apply(P1 const& p1, P2 const& p2, P const& p, EpsPolicy & epsp) { // For robustness purposes, first check if any two points are // the same; in this case simply return that the points are // collinear if (equals_point_point(p1, p2) || equals_point_point(p1, p) || equals_point_point(p2, p)) { return PromotedType(0); } // The side_by_triangle strategy computes the signed area of // the point triplet (p1, p2, p); as such it is (in theory) // invariant under cyclic permutations of its three arguments. // // In the context of numerical errors that arise in // floating-point computations, and in order to make the strategy // consistent with respect to cyclic permutations of its three // arguments, we cyclically permute them so that the first // argument is always the lexicographically smallest point. using less = compare::cartesian; if (less::apply(p, p1)) { if (less::apply(p, p2)) { // p is the lexicographically smallest return side_value(p, p1, p2, epsp); } else { // p2 is the lexicographically smallest return side_value(p2, p, p1, epsp); } } if (less::apply(p1, p2)) { // p1 is the lexicographically smallest return side_value(p1, p2, p, epsp); } else { // p2 is the lexicographically smallest return side_value(p2, p, p1, epsp); } } }; template static inline int apply(P1 const& p1, P2 const& p2, P const& p) { using coor_t = typename select_calculation_type_alt::type; // Promote float->double, small int->int using promoted_t = typename select_most_precise::type; bool const are_all_integral_coordinates = std::is_integral::type>::value && std::is_integral::type>::value && std::is_integral::type>::value; eps_policy< math::detail::equals_factor_policy > epsp; promoted_t s = compute_side_value < coor_t, promoted_t, are_all_integral_coordinates >::apply(p1, p2, p, epsp); promoted_t const zero = promoted_t(); return math::detail::equals_by_policy(s, zero, epsp.policy) ? 0 : s > zero ? 1 : -1; } private: template static inline bool equals_point_point(P1 const& p1, P2 const& p2) { return strategy::within::cartesian_point_point::apply(p1, p2); } }; #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS namespace services { template struct default_strategy { using type = side_by_triangle; }; } #endif }} // namespace strategy::side }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGY_CARTESIAN_SIDE_BY_TRIANGLE_HPP