libcarla/include/system/boost/multiprecision/eigen.hpp

270 lines
14 KiB
C++
Raw Normal View History

2024-10-18 13:19:59 +08:00
///////////////////////////////////////////////////////////////////////////////
// Copyright 2018 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MP_EIGEN_HPP
#define BOOST_MP_EIGEN_HPP
#include <boost/multiprecision/number.hpp>
#include <Eigen/Core>
//
// Generic Eigen support code:
//
namespace Eigen {
template <class B1, class B2>
struct NumTraitsImp;
template <class B1>
struct NumTraitsImp<B1, B1>
{
using self_type = B1;
using Real = typename boost::multiprecision::scalar_result_from_possible_complex<self_type>::type;
using NonInteger = self_type; // Not correct but we can't do much better??
using Literal = double;
using Nested = self_type;
enum
{
IsComplex = boost::multiprecision::number_category<self_type>::value == boost::multiprecision::number_kind_complex,
IsInteger = boost::multiprecision::number_category<self_type>::value == boost::multiprecision::number_kind_integer,
ReadCost = 1,
AddCost = 4,
MulCost = 8,
IsSigned = std::numeric_limits<self_type>::is_specialized ? std::numeric_limits<self_type>::is_signed : true,
RequireInitialization = 1,
};
static Real epsilon()
{
static_assert(std::numeric_limits<Real>::is_specialized, "Eigen's NumTraits instantiated on a type with no numeric_limits support. Are you using a variable precision type?");
return std::numeric_limits<Real>::epsilon();
}
static Real dummy_precision()
{
return 1000 * epsilon();
}
static Real highest()
{
static_assert(std::numeric_limits<Real>::is_specialized, "Eigen's NumTraits instantiated on a type with no numeric_limits support. Are you using a variable precision type?");
return (std::numeric_limits<Real>::max)();
}
static Real lowest()
{
static_assert(std::numeric_limits<Real>::is_specialized, "Eigen's NumTraits instantiated on a type with no numeric_limits support. Are you using a variable precision type?");
return (std::numeric_limits<Real>::min)();
}
static int digits10_imp(const std::integral_constant<bool, true>&)
{
static_assert(std::numeric_limits<Real>::is_specialized, "Eigen's NumTraits instantiated on a type with no numeric_limits support. Are you using a variable precision type?");
return std::numeric_limits<Real>::digits10;
}
template <bool B>
static int digits10_imp(const std::integral_constant<bool, B>&)
{
return Real::thread_default_precision();
}
static int digits10()
{
return digits10_imp(std::integral_constant < bool, std::numeric_limits<Real>::digits10 && (std::numeric_limits<Real>::digits10 != INT_MAX) ? true : false > ());
}
static int digits()
{
// return the number of digits in the component type in case Real is complex
// and we have no numeric_limits specialization.
static_assert(std::numeric_limits<Real>::is_specialized, "Eigen's NumTraits instantiated on a type with no numeric_limits support. Are you using a variable precision type?");
return std::numeric_limits<Real>::digits;
}
static int min_exponent()
{
static_assert(std::numeric_limits<Real>::is_specialized, "Eigen's NumTraits instantiated on a type with no numeric_limits support. Are you using a variable precision type?");
return std::numeric_limits<Real>::min_exponent;
}
static int max_exponent()
{
static_assert(std::numeric_limits<Real>::is_specialized, "Eigen's NumTraits instantiated on a type with no numeric_limits support. Are you using a variable precision type?");
return std::numeric_limits<Real>::max_exponent;
}
static Real infinity()
{
static_assert(std::numeric_limits<Real>::is_specialized, "Eigen's NumTraits instantiated on a type with no numeric_limits support. Are you using a variable precision type?");
return std::numeric_limits<Real>::infinity();
}
static Real quiet_NaN()
{
static_assert(std::numeric_limits<Real>::is_specialized, "Eigen's NumTraits instantiated on a type with no numeric_limits support. Are you using a variable precision type?");
return std::numeric_limits<Real>::quiet_NaN();
}
};
template <class B1, class B2>
struct NumTraitsImp : public NumTraitsImp<B2, B2>
{
//
// This version is instantiated when B1 and B2 are different types, this happens for rational/complex/interval
// types, in which case many methods defer to those of the "component type" B2.
//
using self_type = B1;
using Real = typename boost::multiprecision::scalar_result_from_possible_complex<self_type>::type;
using NonInteger = self_type; // Not correct but we can't do much better??
using Literal = double;
using Nested = self_type;
enum
{
IsComplex = boost::multiprecision::number_category<self_type>::value == boost::multiprecision::number_kind_complex,
IsInteger = boost::multiprecision::number_category<self_type>::value == boost::multiprecision::number_kind_integer,
ReadCost = 1,
AddCost = 4,
MulCost = 8,
IsSigned = std::numeric_limits<self_type>::is_specialized ? std::numeric_limits<self_type>::is_signed : true,
RequireInitialization = 1,
};
static B2 epsilon()
{
return NumTraitsImp<B2, B2>::epsilon();
}
static B2 dummy_precision()
{
return 1000 * epsilon();
}
static B2 highest()
{
return NumTraitsImp<B2, B2>::highest();
}
static B2 lowest()
{
return NumTraitsImp<B2, B2>::lowest();
}
static int digits10()
{
return NumTraitsImp<B2, B2>::digits10();
}
static int digits()
{
return NumTraitsImp<B2, B2>::digits();
}
static int min_exponent()
{
return NumTraitsImp<B2, B2>::min_exponent();
}
static int max_exponent()
{
return NumTraitsImp<B2, B2>::max_exponent();
}
static B2 infinity()
{
return NumTraitsImp<B2, B2>::infinity();
}
static B2 quiet_NaN()
{
return NumTraitsImp<B2, B2>::quiet_NaN();
}
};
template <class Backend, boost::multiprecision::expression_template_option ExpressionTemplates>
struct NumTraits<boost::multiprecision::number<Backend, ExpressionTemplates> > : public NumTraitsImp<boost::multiprecision::number<Backend, ExpressionTemplates>, typename boost::multiprecision::number<Backend, ExpressionTemplates>::value_type>
{};
template <class tag, class Arg1, class Arg2, class Arg3, class Arg4>
struct NumTraits<boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4> > : public NumTraits<typename boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type>
{};
#define BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(A) \
template <class Backend, boost::multiprecision::expression_template_option ExpressionTemplates, typename BinaryOp> \
struct ScalarBinaryOpTraits<boost::multiprecision::number<Backend, ExpressionTemplates>, A, BinaryOp> \
{ \
/*static_assert(boost::multiprecision::is_compatible_arithmetic_type<A, boost::multiprecision::number<Backend, ExpressionTemplates> >::value, "Interoperability with this arithmetic type is not supported.");*/ \
using ReturnType = boost::multiprecision::number<Backend, ExpressionTemplates>; \
}; \
template <class Backend, boost::multiprecision::expression_template_option ExpressionTemplates, typename BinaryOp> \
struct ScalarBinaryOpTraits<A, boost::multiprecision::number<Backend, ExpressionTemplates>, BinaryOp> \
{ \
/*static_assert(boost::multiprecision::is_compatible_arithmetic_type<A, boost::multiprecision::number<Backend, ExpressionTemplates> >::value, "Interoperability with this arithmetic type is not supported.");*/ \
using ReturnType = boost::multiprecision::number<Backend, ExpressionTemplates>; \
};
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(float)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(double)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(long double)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(char)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(unsigned char)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(signed char)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(short)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(unsigned short)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(int)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(unsigned int)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(long)
BOOST_MP_EIGEN_SCALAR_TRAITS_DECL(unsigned long)
#if 0
template<class Backend, boost::multiprecision::expression_template_option ExpressionTemplates, class Backend2, boost::multiprecision::expression_template_option ExpressionTemplates2, typename BinaryOp>
struct ScalarBinaryOpTraits<boost::multiprecision::number<Backend, ExpressionTemplates>, boost::multiprecision::number<Backend2, ExpressionTemplates2>, BinaryOp>
{
static_assert(
boost::multiprecision::is_compatible_arithmetic_type<boost::multiprecision::number<Backend2, ExpressionTemplates2>, boost::multiprecision::number<Backend, ExpressionTemplates> >::value
|| boost::multiprecision::is_compatible_arithmetic_type<boost::multiprecision::number<Backend, ExpressionTemplates>, boost::multiprecision::number<Backend2, ExpressionTemplates2> >::value, "Interoperability with this arithmetic type is not supported.");
using ReturnType = typename std::conditional<std::is_convertible<boost::multiprecision::number<Backend2, ExpressionTemplates2>, boost::multiprecision::number<Backend, ExpressionTemplates> >::value,
boost::multiprecision::number<Backend, ExpressionTemplates>, boost::multiprecision::number<Backend2, ExpressionTemplates2> >::type;
};
template<unsigned D, typename BinaryOp>
struct ScalarBinaryOpTraits<boost::multiprecision::number<boost::multiprecision::backends::mpc_complex_backend<D>, boost::multiprecision::et_on>, boost::multiprecision::mpfr_float, BinaryOp>
{
using ReturnType = boost::multiprecision::number<boost::multiprecision::backends::mpc_complex_backend<D>, boost::multiprecision::et_on>;
};
template<typename BinaryOp>
struct ScalarBinaryOpTraits<boost::multiprecision::mpfr_float, boost::multiprecision::mpc_complex, BinaryOp>
{
using ReturnType = boost::multiprecision::number<boost::multiprecision::backends::mpc_complex_backend<0>, boost::multiprecision::et_on>;
};
template<class Backend, boost::multiprecision::expression_template_option ExpressionTemplates, typename BinaryOp>
struct ScalarBinaryOpTraits<boost::multiprecision::number<Backend, ExpressionTemplates>, boost::multiprecision::number<Backend, ExpressionTemplates>, BinaryOp>
{
using ReturnType = boost::multiprecision::number<Backend, ExpressionTemplates>;
};
#endif
template <class Backend, boost::multiprecision::expression_template_option ExpressionTemplates, class tag, class Arg1, class Arg2, class Arg3, class Arg4, typename BinaryOp>
struct ScalarBinaryOpTraits<boost::multiprecision::number<Backend, ExpressionTemplates>, boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, BinaryOp>
{
static_assert(std::is_convertible<typename boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type, boost::multiprecision::number<Backend, ExpressionTemplates> >::value, "Interoperability with this arithmetic type is not supported.");
using ReturnType = boost::multiprecision::number<Backend, ExpressionTemplates>;
};
template <class tag, class Arg1, class Arg2, class Arg3, class Arg4, class Backend, boost::multiprecision::expression_template_option ExpressionTemplates, typename BinaryOp>
struct ScalarBinaryOpTraits<boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, boost::multiprecision::number<Backend, ExpressionTemplates>, BinaryOp>
{
static_assert(std::is_convertible<typename boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type, boost::multiprecision::number<Backend, ExpressionTemplates> >::value, "Interoperability with this arithmetic type is not supported.");
using ReturnType = boost::multiprecision::number<Backend, ExpressionTemplates>;
};
namespace internal {
template <typename Scalar>
struct conj_retval;
template <typename Scalar, bool IsComplex>
struct conj_impl;
template <class tag, class Arg1, class Arg2, class Arg3, class Arg4>
struct conj_retval<boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4> >
{
using type = typename boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type;
};
template <class tag, class Arg1, class Arg2, class Arg3, class Arg4>
struct conj_impl<boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, true>
{
EIGEN_DEVICE_FUNC
static inline typename boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type run(const typename boost::multiprecision::detail::expression<tag, Arg1, Arg2, Arg3, Arg4>& x)
{
return conj(x);
}
};
} // namespace internal
} // namespace Eigen
#endif