158 lines
5.0 KiB
C++
158 lines
5.0 KiB
C++
|
///////////////////////////////////////////////////////////////
|
||
|
// Copyright 2013 John Maddock. Distributed under the Boost
|
||
|
// Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
|
||
|
|
||
|
#ifndef BOOST_MP_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP
|
||
|
#define BOOST_MP_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP
|
||
|
|
||
|
#include <boost/multiprecision/detail/assert.hpp>
|
||
|
|
||
|
namespace boost { namespace multiprecision { namespace backends {
|
||
|
|
||
|
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
|
||
|
void eval_exp_taylor(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>& res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>& arg)
|
||
|
{
|
||
|
constexpr std::ptrdiff_t bits = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count;
|
||
|
//
|
||
|
// Taylor series for small argument, note returns exp(x) - 1:
|
||
|
//
|
||
|
res = limb_type(0);
|
||
|
cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> num(arg), denom, t;
|
||
|
denom = limb_type(1);
|
||
|
eval_add(res, num);
|
||
|
|
||
|
for (std::size_t k = 2;; ++k)
|
||
|
{
|
||
|
eval_multiply(denom, k);
|
||
|
eval_multiply(num, arg);
|
||
|
eval_divide(t, num, denom);
|
||
|
eval_add(res, t);
|
||
|
if (eval_is_zero(t) || (res.exponent() - bits > t.exponent()))
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
|
||
|
void eval_exp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>& res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>& arg)
|
||
|
{
|
||
|
//
|
||
|
// This is based on MPFR's method, let:
|
||
|
//
|
||
|
// n = floor(x / ln(2))
|
||
|
//
|
||
|
// Then:
|
||
|
//
|
||
|
// r = x - n ln(2) : 0 <= r < ln(2)
|
||
|
//
|
||
|
// We can reduce r further by dividing by 2^k, with k ~ sqrt(n),
|
||
|
// so if:
|
||
|
//
|
||
|
// e0 = exp(r / 2^k) - 1
|
||
|
//
|
||
|
// With e0 evaluated by taylor series for small arguments, then:
|
||
|
//
|
||
|
// exp(x) = 2^n (1 + e0)^2^k
|
||
|
//
|
||
|
// Note that to preserve precision we actually square (1 + e0) k times, calculating
|
||
|
// the result less one each time, i.e.
|
||
|
//
|
||
|
// (1 + e0)^2 - 1 = e0^2 + 2e0
|
||
|
//
|
||
|
// Then add the final 1 at the end, given that e0 is small, this effectively wipes
|
||
|
// out the error in the last step.
|
||
|
//
|
||
|
using default_ops::eval_add;
|
||
|
using default_ops::eval_convert_to;
|
||
|
using default_ops::eval_increment;
|
||
|
using default_ops::eval_multiply;
|
||
|
using default_ops::eval_subtract;
|
||
|
|
||
|
int type = eval_fpclassify(arg);
|
||
|
bool isneg = eval_get_sign(arg) < 0;
|
||
|
if (type == static_cast<int>(FP_NAN))
|
||
|
{
|
||
|
res = arg;
|
||
|
errno = EDOM;
|
||
|
return;
|
||
|
}
|
||
|
else if (type == static_cast<int>(FP_INFINITE))
|
||
|
{
|
||
|
res = arg;
|
||
|
if (isneg)
|
||
|
res = limb_type(0u);
|
||
|
else
|
||
|
res = arg;
|
||
|
return;
|
||
|
}
|
||
|
else if (type == static_cast<int>(FP_ZERO))
|
||
|
{
|
||
|
res = limb_type(1);
|
||
|
return;
|
||
|
}
|
||
|
cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> t, n;
|
||
|
if (isneg)
|
||
|
{
|
||
|
t = arg;
|
||
|
t.negate();
|
||
|
eval_exp(res, t);
|
||
|
t.swap(res);
|
||
|
res = limb_type(1);
|
||
|
eval_divide(res, t);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
eval_divide(n, arg, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >());
|
||
|
eval_floor(n, n);
|
||
|
eval_multiply(t, n, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >());
|
||
|
eval_subtract(t, arg);
|
||
|
t.negate();
|
||
|
if (t.compare(default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >()) > 0)
|
||
|
{
|
||
|
// There are some rare cases where the multiply rounds down leaving a remainder > ln2
|
||
|
// See https://github.com/boostorg/multiprecision/issues/120
|
||
|
eval_increment(n);
|
||
|
t = limb_type(0);
|
||
|
}
|
||
|
if (eval_get_sign(t) < 0)
|
||
|
{
|
||
|
// There are some very rare cases where arg/ln2 is an integer, and the subsequent multiply
|
||
|
// rounds up, in that situation t ends up negative at this point which breaks our invariants below:
|
||
|
t = limb_type(0);
|
||
|
}
|
||
|
|
||
|
Exponent k, nn;
|
||
|
eval_convert_to(&nn, n);
|
||
|
|
||
|
if (nn == (std::numeric_limits<Exponent>::max)())
|
||
|
{
|
||
|
// The result will necessarily oveflow:
|
||
|
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::infinity().backend();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
BOOST_MP_ASSERT(t.compare(default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >()) < 0);
|
||
|
|
||
|
k = nn ? Exponent(1) << (msb(nn) / 2) : 0;
|
||
|
k = (std::min)(k, (Exponent)(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count / 4));
|
||
|
eval_ldexp(t, t, -k);
|
||
|
|
||
|
eval_exp_taylor(res, t);
|
||
|
//
|
||
|
// Square 1 + res k times:
|
||
|
//
|
||
|
for (Exponent s = 0; s < k; ++s)
|
||
|
{
|
||
|
t.swap(res);
|
||
|
eval_multiply(res, t, t);
|
||
|
eval_ldexp(t, t, 1);
|
||
|
eval_add(res, t);
|
||
|
}
|
||
|
eval_add(res, limb_type(1));
|
||
|
eval_ldexp(res, res, nn);
|
||
|
}
|
||
|
|
||
|
}}} // namespace boost::multiprecision::backends
|
||
|
|
||
|
#endif
|