libcarla/include/system/boost/math/tools/engel_expansion.hpp

117 lines
3.1 KiB
C++
Raw Normal View History

2024-10-18 13:19:59 +08:00
// (C) Copyright Nick Thompson 2020.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_ENGEL_EXPANSION_HPP
#define BOOST_MATH_TOOLS_ENGEL_EXPANSION_HPP
#include <cmath>
#include <cstdint>
#include <vector>
#include <ostream>
#include <iomanip>
#include <limits>
#include <stdexcept>
namespace boost::math::tools {
template<typename Real, typename Z = int64_t>
class engel_expansion {
public:
engel_expansion(Real x) : x_{x}
{
using std::floor;
using std::abs;
using std::sqrt;
using std::isfinite;
if (!isfinite(x))
{
throw std::domain_error("Cannot convert non-finites into an Engel expansion.");
}
if(x==0)
{
throw std::domain_error("Zero does not have an Engel expansion.");
}
a_.reserve(64);
// Let the error bound grow by 1 ULP/iteration.
// I haven't done the error analysis to show that this is an expected rate of error growth,
// but if you don't do this, you can easily get into an infinite loop.
Real i = 1;
Real computed = 0;
Real term = 1;
Real scale = std::numeric_limits<Real>::epsilon()*abs(x_)/2;
Real u = x;
while (abs(x_ - computed) > (i++)*scale)
{
Real recip = 1/u;
Real ak = ceil(recip);
a_.push_back(static_cast<Z>(ak));
u = u*ak - 1;
if (u==0)
{
break;
}
term /= ak;
computed += term;
}
for (size_t j = 1; j < a_.size(); ++j)
{
// Sanity check: This should only happen when wraparound occurs:
if (a_[j] < a_[j-1])
{
throw std::domain_error("The digits of an Engel expansion must form a non-decreasing sequence; consider increasing the wide of the integer type.");
}
// Watch out for saturating behavior:
if (a_[j] == (std::numeric_limits<Z>::max)())
{
throw std::domain_error("The integer type Z does not have enough width to hold the terms of the Engel expansion; please widen the type.");
}
}
a_.shrink_to_fit();
}
const std::vector<Z>& digits() const
{
return a_;
}
template<typename T, typename Z2>
friend std::ostream& operator<<(std::ostream& out, engel_expansion<T, Z2>& eng);
private:
Real x_;
std::vector<Z> a_;
};
template<typename Real, typename Z2>
std::ostream& operator<<(std::ostream& out, engel_expansion<Real, Z2>& engel)
{
constexpr const int p = std::numeric_limits<Real>::max_digits10;
if constexpr (p == 2147483647)
{
out << std::setprecision(engel.x_.backend().precision());
}
else
{
out << std::setprecision(p);
}
out << "{";
for (size_t i = 0; i < engel.a_.size() - 1; ++i)
{
out << engel.a_[i] << ", ";
}
out << engel.a_.back();
out << "}";
return out;
}
}
#endif