libcarla/include/system/boost/math/statistics/ljung_box.hpp

71 lines
2.1 KiB
C++
Raw Normal View History

2024-10-18 13:19:59 +08:00
// (C) Copyright Nick Thompson 2019.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_STATISTICS_LJUNG_BOX_HPP
#define BOOST_MATH_STATISTICS_LJUNG_BOX_HPP
#include <cmath>
#include <iterator>
#include <utility>
#include <boost/math/distributions/chi_squared.hpp>
#include <boost/math/statistics/univariate_statistics.hpp>
namespace boost::math::statistics {
template<class RandomAccessIterator>
auto ljung_box(RandomAccessIterator begin, RandomAccessIterator end, int64_t lags = -1, int64_t fit_dof = 0) {
using Real = typename std::iterator_traits<RandomAccessIterator>::value_type;
int64_t n = std::distance(begin, end);
if (lags >= n) {
throw std::domain_error("Number of lags must be < number of elements in array.");
}
if (lags == -1) {
// This is the same default as Mathematica; it seems sensible enough . . .
lags = static_cast<int64_t>(std::ceil(std::log(Real(n))));
}
if (lags <= 0) {
throw std::domain_error("Must have at least one lag.");
}
auto mu = boost::math::statistics::mean(begin, end);
std::vector<Real> r(lags + 1, Real(0));
for (size_t i = 0; i < r.size(); ++i) {
for (auto it = begin + i; it != end; ++it) {
Real ak = *(it) - mu;
Real akml = *(it-i) - mu;
r[i] += ak*akml;
}
}
Real Q = 0;
for (size_t k = 1; k < r.size(); ++k) {
Q += r[k]*r[k]/(r[0]*r[0]*(n-k));
}
Q *= n*(n+2);
typedef boost::math::policies::policy<
boost::math::policies::promote_float<false>,
boost::math::policies::promote_double<false> >
no_promote_policy;
auto chi = boost::math::chi_squared_distribution<Real, no_promote_policy>(Real(lags - fit_dof));
Real pvalue = 1 - boost::math::cdf(chi, Q);
return std::make_pair(Q, pvalue);
}
template<class RandomAccessContainer>
auto ljung_box(RandomAccessContainer const & v, int64_t lags = -1, int64_t fit_dof = 0) {
return ljung_box(v.begin(), v.end(), lags, fit_dof);
}
}
#endif