libcarla/include/system/boost/math/special_functions/daubechies_wavelet.hpp

254 lines
9.4 KiB
C++
Raw Normal View History

2024-10-18 13:19:59 +08:00
/*
* Copyright Nick Thompson, 2020
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_MATH_SPECIAL_DAUBECHIES_WAVELET_HPP
#define BOOST_MATH_SPECIAL_DAUBECHIES_WAVELET_HPP
#include <vector>
#include <array>
#include <cmath>
#include <thread>
#include <future>
#include <iostream>
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/detail/daubechies_scaling_integer_grid.hpp>
#include <boost/math/special_functions/daubechies_scaling.hpp>
#include <boost/math/filters/daubechies.hpp>
#include <boost/math/interpolators/detail/cubic_hermite_detail.hpp>
#include <boost/math/interpolators/detail/quintic_hermite_detail.hpp>
#include <boost/math/interpolators/detail/septic_hermite_detail.hpp>
namespace boost::math {
template<class Real, int p, int order>
std::vector<Real> daubechies_wavelet_dyadic_grid(int64_t j_max)
{
if (j_max == 0)
{
throw std::domain_error("The wavelet dyadic grid is refined from the scaling integer grid, so its minimum amount of data is half integer widths.");
}
auto phijk = daubechies_scaling_dyadic_grid<Real, p, order>(j_max - 1);
//psi_j[l] = psi(-p+1 + l/2^j) = \sum_{k=0}^{2p-1} (-1)^k c_k \phi(1-2p+k + l/2^{j-1})
//For derivatives just map c_k -> 2^order c_k.
auto d = boost::math::filters::daubechies_scaling_filter<Real, p>();
Real scale = boost::math::constants::root_two<Real>() * (1 << order);
for (size_t i = 0; i < d.size(); ++i)
{
d[i] *= scale;
if (!(i & 1))
{
d[i] = -d[i];
}
}
std::vector<Real> v(2 * p + (2 * p - 1) * ((int64_t(1) << j_max) - 1), std::numeric_limits<Real>::quiet_NaN());
v[0] = 0;
v[v.size() - 1] = 0;
for (int64_t l = 1; l < static_cast<int64_t>(v.size() - 1); ++l)
{
Real term = 0;
for (int64_t k = 0; k < static_cast<int64_t>(d.size()); ++k)
{
int64_t idx = (int64_t(1) << (j_max - 1)) * (1 - 2 * p + k) + l;
if (idx < 0 || idx >= static_cast<int64_t>(phijk.size()))
{
continue;
}
term += d[k] * phijk[idx];
}
v[l] = term;
}
return v;
}
template<class Real, int p>
class daubechies_wavelet {
//
// Some type manipulation so we know the type of the interpolator, and the vector type it requires:
//
typedef std::vector < std::array < Real, p < 6 ? 2 : p < 10 ? 3 : 4>> vector_type;
//
// List our interpolators:
//
typedef std::tuple<
detail::null_interpolator, detail::matched_holder_aos<vector_type>, detail::linear_interpolation_aos<vector_type>,
interpolators::detail::cardinal_cubic_hermite_detail_aos<vector_type>, interpolators::detail::cardinal_quintic_hermite_detail_aos<vector_type>,
interpolators::detail::cardinal_septic_hermite_detail_aos<vector_type> > interpolator_list;
//
// Select the one we need:
//
typedef std::tuple_element_t<
p == 1 ? 0 :
p == 2 ? 1 :
p == 3 ? 2 :
p <= 5 ? 3 :
p <= 9 ? 4 : 5, interpolator_list> interpolator_type;
public:
daubechies_wavelet(int grid_refinements = -1)
{
static_assert(p < 20, "Daubechies wavelets are only implemented for p < 20.");
static_assert(p > 0, "Daubechies wavelets must have at least 1 vanishing moment.");
if (grid_refinements == 0)
{
throw std::domain_error("The wavelet requires at least 1 grid refinement.");
}
if constexpr (p == 1)
{
return;
}
else
{
if (grid_refinements < 0)
{
if (std::is_same_v<Real, float>)
{
if (grid_refinements == -2)
{
// Control absolute error:
// p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
std::array<int, 20> r{ -1, -1, 18, 19, 16, 11, 8, 7, 7, 7, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3 };
grid_refinements = r[p];
}
else
{
// Control relative error:
// p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
std::array<int, 20> r{ -1, -1, 21, 21, 21, 17, 16, 15, 14, 13, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11 };
grid_refinements = r[p];
}
}
else if (std::is_same_v<Real, double>)
{
// p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
std::array<int, 20> r{ -1, -1, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 19, 18, 18, 18, 18, 18, 18, 18 };
grid_refinements = r[p];
}
else
{
grid_refinements = 21;
}
}
// Compute the refined grid:
// In fact for float precision I know the grid must be computed in double precision and then cast back down, or else parts of the support are systematically inaccurate.
std::future<std::vector<Real>> t0 = std::async(std::launch::async, [&grid_refinements]() {
// Computing in higher precision and downcasting is essential for 1ULP evaluation in float precision:
auto v = daubechies_wavelet_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 0>(grid_refinements);
return detail::daubechies_eval_type<Real>::vector_cast(v);
});
// Compute the derivative of the refined grid:
std::future<std::vector<Real>> t1 = std::async(std::launch::async, [&grid_refinements]() {
auto v = daubechies_wavelet_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 1>(grid_refinements);
return detail::daubechies_eval_type<Real>::vector_cast(v);
});
// if necessary, compute the second and third derivative:
std::vector<Real> d2ydx2;
std::vector<Real> d3ydx3;
if constexpr (p >= 6) {
std::future<std::vector<Real>> t3 = std::async(std::launch::async, [&grid_refinements]() {
auto v = daubechies_wavelet_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 2>(grid_refinements);
return detail::daubechies_eval_type<Real>::vector_cast(v);
});
if constexpr (p >= 10) {
std::future<std::vector<Real>> t4 = std::async(std::launch::async, [&grid_refinements]() {
auto v = daubechies_wavelet_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 3>(grid_refinements);
return detail::daubechies_eval_type<Real>::vector_cast(v);
});
d3ydx3 = t4.get();
}
d2ydx2 = t3.get();
}
auto y = t0.get();
auto dydx = t1.get();
if constexpr (p >= 2)
{
vector_type data(y.size());
for (size_t i = 0; i < y.size(); ++i)
{
data[i][0] = y[i];
data[i][1] = dydx[i];
if constexpr (p >= 6)
data[i][2] = d2ydx2[i];
if constexpr (p >= 10)
data[i][3] = d3ydx3[i];
}
if constexpr (p <= 3)
m_interpolator = std::make_shared<interpolator_type>(std::move(data), grid_refinements, Real(-p + 1));
else
m_interpolator = std::make_shared<interpolator_type>(std::move(data), Real(-p + 1), Real(1) / (1 << grid_refinements));
}
else
m_interpolator = std::make_shared<detail::null_interpolator>();
}
}
inline Real operator()(Real x) const
{
if (x <= -p + 1 || x >= p)
{
return 0;
}
if constexpr (p == 1)
{
if (x < Real(1) / Real(2))
{
return 1;
}
else if (x == Real(1) / Real(2))
{
return 0;
}
return -1;
}
return (*m_interpolator)(x);
}
inline Real prime(Real x) const
{
static_assert(p > 2, "The 3-vanishing moment Daubechies wavelet is the first which is continuously differentiable.");
if (x <= -p + 1 || x >= p)
{
return 0;
}
return m_interpolator->prime(x);
}
inline Real double_prime(Real x) const
{
static_assert(p >= 6, "Second derivatives of Daubechies wavelets require at least 6 vanishing moments.");
if (x <= -p + 1 || x >= p)
{
return Real(0);
}
return m_interpolator->double_prime(x);
}
std::pair<Real, Real> support() const
{
return { Real(-p + 1), Real(p) };
}
int64_t bytes() const
{
return m_interpolator->bytes() + sizeof(*this);
}
private:
std::shared_ptr<interpolator_type> m_interpolator;
};
}
#endif