libcarla/include/system/boost/graph/tiernan_all_cycles.hpp

373 lines
12 KiB
C++
Raw Normal View History

2024-10-18 13:19:59 +08:00
// (C) Copyright 2007-2009 Andrew Sutton
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0 (See accompanying file
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GRAPH_CYCLE_HPP
#define BOOST_GRAPH_CYCLE_HPP
#include <vector>
#include <boost/config.hpp>
#include <boost/graph/graph_concepts.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/concept/assert.hpp>
#include <boost/concept/detail/concept_def.hpp>
namespace boost
{
namespace concepts
{
BOOST_concept(CycleVisitor, (Visitor)(Path)(Graph))
{
BOOST_CONCEPT_USAGE(CycleVisitor) { vis.cycle(p, g); }
private:
Visitor vis;
Graph g;
Path p;
};
} /* namespace concepts */
using concepts::CycleVisitorConcept;
} /* namespace boost */
#include <boost/concept/detail/concept_undef.hpp>
namespace boost
{
// The implementation of this algorithm is a reproduction of the Teirnan
// approach for directed graphs: bibtex follows
//
// @article{362819,
// author = {James C. Tiernan},
// title = {An efficient search algorithm to find the elementary
// circuits of a graph}, journal = {Commun. ACM}, volume = {13}, number
// = {12}, year = {1970}, issn = {0001-0782}, pages = {722--726}, doi =
// {http://doi.acm.org/10.1145/362814.362819},
// publisher = {ACM Press},
// address = {New York, NY, USA},
// }
//
// It should be pointed out that the author does not provide a complete analysis
// for either time or space. This is in part, due to the fact that it's a fairly
// input sensitive problem related to the density and construction of the graph,
// not just its size.
//
// I've also taken some liberties with the interpretation of the algorithm -
// I've basically modernized it to use real data structures (no more arrays and
// matrices). Oh... and there's explicit control structures - not just gotos.
//
// The problem is definitely NP-complete, an unbounded implementation of this
// will probably run for quite a while on a large graph. The conclusions
// of this paper also reference a Paton algorithm for undirected graphs as being
// much more efficient (apparently based on spanning trees). Although not
// implemented, it can be found here:
//
// @article{363232,
// author = {Keith Paton},
// title = {An algorithm for finding a fundamental set of cycles of a
// graph}, journal = {Commun. ACM}, volume = {12}, number = {9}, year =
// {1969}, issn = {0001-0782}, pages = {514--518}, doi =
// {http://doi.acm.org/10.1145/363219.363232},
// publisher = {ACM Press},
// address = {New York, NY, USA},
// }
/**
* The default cycle visitor provides an empty visit function for cycle
* visitors.
*/
struct cycle_visitor
{
template < typename Path, typename Graph >
inline void cycle(const Path& p, const Graph& g)
{
}
};
/**
* The min_max_cycle_visitor simultaneously records the minimum and maximum
* cycles in a graph.
*/
struct min_max_cycle_visitor
{
min_max_cycle_visitor(std::size_t& min_, std::size_t& max_)
: minimum(min_), maximum(max_)
{
}
template < typename Path, typename Graph >
inline void cycle(const Path& p, const Graph& g)
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
std::size_t len = p.size();
minimum = min BOOST_PREVENT_MACRO_SUBSTITUTION(minimum, len);
maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION(maximum, len);
}
std::size_t& minimum;
std::size_t& maximum;
};
inline min_max_cycle_visitor find_min_max_cycle(
std::size_t& min_, std::size_t& max_)
{
return min_max_cycle_visitor(min_, max_);
}
namespace detail
{
template < typename Graph, typename Path >
inline bool is_vertex_in_path(const Graph&,
typename graph_traits< Graph >::vertex_descriptor v, const Path& p)
{
return (std::find(p.begin(), p.end(), v) != p.end());
}
template < typename Graph, typename ClosedMatrix >
inline bool is_path_closed(const Graph& g,
typename graph_traits< Graph >::vertex_descriptor u,
typename graph_traits< Graph >::vertex_descriptor v,
const ClosedMatrix& closed)
{
// the path from u to v is closed if v can be found in the list
// of closed vertices associated with u.
typedef typename ClosedMatrix::const_reference Row;
Row r = closed[get(vertex_index, g, u)];
if (find(r.begin(), r.end(), v) != r.end())
{
return true;
}
return false;
}
template < typename Graph, typename Path, typename ClosedMatrix >
inline bool can_extend_path(const Graph& g,
typename graph_traits< Graph >::edge_descriptor e, const Path& p,
const ClosedMatrix& m)
{
BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
BOOST_CONCEPT_ASSERT((VertexIndexGraphConcept< Graph >));
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
// get the vertices in question
Vertex u = source(e, g), v = target(e, g);
// conditions for allowing a traversal along this edge are:
// 1. the index of v must be greater than that at which the
// path is rooted (p.front()).
// 2. the vertex v cannot already be in the path
// 3. the vertex v cannot be closed to the vertex u
bool indices
= get(vertex_index, g, p.front()) < get(vertex_index, g, v);
bool path = !is_vertex_in_path(g, v, p);
bool closed = !is_path_closed(g, u, v, m);
return indices && path && closed;
}
template < typename Graph, typename Path >
inline bool can_wrap_path(const Graph& g, const Path& p)
{
BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
typedef typename graph_traits< Graph >::out_edge_iterator OutIterator;
// iterate over the out-edges of the back, looking for the
// front of the path. also, we can't travel along the same
// edge that we did on the way here, but we don't quite have the
// stringent requirements that we do in can_extend_path().
Vertex u = p.back(), v = p.front();
OutIterator i, end;
for (boost::tie(i, end) = out_edges(u, g); i != end; ++i)
{
if ((target(*i, g) == v))
{
return true;
}
}
return false;
}
template < typename Graph, typename Path, typename ClosedMatrix >
inline typename graph_traits< Graph >::vertex_descriptor extend_path(
const Graph& g, Path& p, ClosedMatrix& closed)
{
BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
typedef typename graph_traits< Graph >::out_edge_iterator OutIterator;
// get the current vertex
Vertex u = p.back();
Vertex ret = graph_traits< Graph >::null_vertex();
// AdjacencyIterator i, end;
OutIterator i, end;
for (boost::tie(i, end) = out_edges(u, g); i != end; ++i)
{
Vertex v = target(*i, g);
// if we can actually extend along this edge,
// then that's what we want to do
if (can_extend_path(g, *i, p, closed))
{
p.push_back(v); // add the vertex to the path
ret = v;
break;
}
}
return ret;
}
template < typename Graph, typename Path, typename ClosedMatrix >
inline bool exhaust_paths(const Graph& g, Path& p, ClosedMatrix& closed)
{
BOOST_CONCEPT_ASSERT((GraphConcept< Graph >));
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
// if there's more than one vertex in the path, this closes
// of some possible routes and returns true. otherwise, if there's
// only one vertex left, the vertex has been used up
if (p.size() > 1)
{
// get the last and second to last vertices, popping the last
// vertex off the path
Vertex last, prev;
last = p.back();
p.pop_back();
prev = p.back();
// reset the closure for the last vertex of the path and
// indicate that the last vertex in p is now closed to
// the next-to-last vertex in p
closed[get(vertex_index, g, last)].clear();
closed[get(vertex_index, g, prev)].push_back(last);
return true;
}
else
{
return false;
}
}
template < typename Graph, typename Visitor >
inline void all_cycles_from_vertex(const Graph& g,
typename graph_traits< Graph >::vertex_descriptor v, Visitor vis,
std::size_t minlen, std::size_t maxlen)
{
BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >));
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
typedef std::vector< Vertex > Path;
BOOST_CONCEPT_ASSERT((CycleVisitorConcept< Visitor, Path, Graph >));
typedef std::vector< Vertex > VertexList;
typedef std::vector< VertexList > ClosedMatrix;
Path p;
ClosedMatrix closed(num_vertices(g), VertexList());
Vertex null = graph_traits< Graph >::null_vertex();
// each path investigation starts at the ith vertex
p.push_back(v);
while (1)
{
// extend the path until we've reached the end or the
// maxlen-sized cycle
Vertex j = null;
while (((j = detail::extend_path(g, p, closed)) != null)
&& (p.size() < maxlen))
; // empty loop
// if we're done extending the path and there's an edge
// connecting the back to the front, then we should have
// a cycle.
if (detail::can_wrap_path(g, p) && p.size() >= minlen)
{
vis.cycle(p, g);
}
if (!detail::exhaust_paths(g, p, closed))
{
break;
}
}
}
// Select the minimum allowable length of a cycle based on the directedness
// of the graph - 2 for directed, 3 for undirected.
template < typename D > struct min_cycles
{
enum
{
value = 2
};
};
template <> struct min_cycles< undirected_tag >
{
enum
{
value = 3
};
};
} /* namespace detail */
template < typename Graph, typename Visitor >
inline void tiernan_all_cycles(
const Graph& g, Visitor vis, std::size_t minlen, std::size_t maxlen)
{
BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >));
typedef typename graph_traits< Graph >::vertex_iterator VertexIterator;
VertexIterator i, end;
for (boost::tie(i, end) = vertices(g); i != end; ++i)
{
detail::all_cycles_from_vertex(g, *i, vis, minlen, maxlen);
}
}
template < typename Graph, typename Visitor >
inline void tiernan_all_cycles(const Graph& g, Visitor vis, std::size_t maxlen)
{
typedef typename graph_traits< Graph >::directed_category Dir;
tiernan_all_cycles(g, vis, detail::min_cycles< Dir >::value, maxlen);
}
template < typename Graph, typename Visitor >
inline void tiernan_all_cycles(const Graph& g, Visitor vis)
{
typedef typename graph_traits< Graph >::directed_category Dir;
tiernan_all_cycles(g, vis, detail::min_cycles< Dir >::value,
(std::numeric_limits< std::size_t >::max)());
}
template < typename Graph >
inline std::pair< std::size_t, std::size_t > tiernan_girth_and_circumference(
const Graph& g)
{
std::size_t min_ = (std::numeric_limits< std::size_t >::max)(), max_ = 0;
tiernan_all_cycles(g, find_min_max_cycle(min_, max_));
// if this is the case, the graph is acyclic...
if (max_ == 0)
max_ = min_;
return std::make_pair(min_, max_);
}
template < typename Graph > inline std::size_t tiernan_girth(const Graph& g)
{
return tiernan_girth_and_circumference(g).first;
}
template < typename Graph >
inline std::size_t tiernan_circumference(const Graph& g)
{
return tiernan_girth_and_circumference(g).second;
}
} /* namespace boost */
#endif