libcarla/include/system/boost/geometry/srs/projections/proj/qsc.hpp

531 lines
24 KiB
C++
Raw Normal View History

2024-10-18 13:19:59 +08:00
// Boost.Geometry - gis-projections (based on PROJ4)
// Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2017, 2018, 2019.
// Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This file is converted from PROJ4, http://trac.osgeo.org/proj
// PROJ4 is originally written by Gerald Evenden (then of the USGS)
// PROJ4 is maintained by Frank Warmerdam
// PROJ4 is converted to Boost.Geometry by Barend Gehrels
// Last updated version of proj: 5.0.0
// Original copyright notice:
// This implements the Quadrilateralized Spherical Cube (QSC) projection.
// Copyright (c) 2011, 2012 Martin Lambers <marlam@marlam.de>
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// The QSC projection was introduced in:
// [OL76]
// E.M. O'Neill and R.E. Laubscher, "Extended Studies of a Quadrilateralized
// Spherical Cube Earth Data Base", Naval Environmental Prediction Research
// Facility Tech. Report NEPRF 3-76 (CSC), May 1976.
// The preceding shift from an ellipsoid to a sphere, which allows to apply
// this projection to ellipsoids as used in the Ellipsoidal Cube Map model,
// is described in
// [LK12]
// M. Lambers and A. Kolb, "Ellipsoidal Cube Maps for Accurate Rendering of
// Planetary-Scale Terrain Data", Proc. Pacfic Graphics (Short Papers), Sep.
// 2012
// You have to choose one of the following projection centers,
// corresponding to the centers of the six cube faces:
// phi0 = 0.0, lam0 = 0.0 ("front" face)
// phi0 = 0.0, lam0 = 90.0 ("right" face)
// phi0 = 0.0, lam0 = 180.0 ("back" face)
// phi0 = 0.0, lam0 = -90.0 ("left" face)
// phi0 = 90.0 ("top" face)
// phi0 = -90.0 ("bottom" face)
// Other projection centers will not work!
// In the projection code below, each cube face is handled differently.
// See the computation of the face parameter in the ENTRY0(qsc) function
// and the handling of different face values (FACE_*) in the forward and
// inverse projections.
// Furthermore, the projection is originally only defined for theta angles
// between (-1/4 * PI) and (+1/4 * PI) on the current cube face. This area
// of definition is named AREA_0 in the projection code below. The other
// three areas of a cube face are handled by rotation of AREA_0.
#ifndef BOOST_GEOMETRY_PROJECTIONS_QSC_HPP
#define BOOST_GEOMETRY_PROJECTIONS_QSC_HPP
#include <boost/core/ignore_unused.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/srs/projections/impl/base_static.hpp>
#include <boost/geometry/srs/projections/impl/base_dynamic.hpp>
#include <boost/geometry/srs/projections/impl/projects.hpp>
#include <boost/geometry/srs/projections/impl/factory_entry.hpp>
namespace boost { namespace geometry
{
namespace projections
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace qsc
{
/* The six cube faces. */
enum face_type {
face_front = 0,
face_right = 1,
face_back = 2,
face_left = 3,
face_top = 4,
face_bottom = 5
};
template <typename T>
struct par_qsc
{
T a_squared;
T b;
T one_minus_f;
T one_minus_f_squared;
face_type face;
};
static const double epsilon10 = 1.e-10;
/* The four areas on a cube face. AREA_0 is the area of definition,
* the other three areas are counted counterclockwise. */
enum area_type {
area_0 = 0,
area_1 = 1,
area_2 = 2,
area_3 = 3
};
/* Helper function for forward projection: compute the theta angle
* and determine the area number. */
template <typename T>
inline T qsc_fwd_equat_face_theta(T const& phi, T const& y, T const& x, area_type *area)
{
static const T fourth_pi = detail::fourth_pi<T>();
static const T half_pi = detail::half_pi<T>();
static const T pi = detail::pi<T>();
T theta;
if (phi < epsilon10) {
*area = area_0;
theta = 0.0;
} else {
theta = atan2(y, x);
if (fabs(theta) <= fourth_pi) {
*area = area_0;
} else if (theta > fourth_pi && theta <= half_pi + fourth_pi) {
*area = area_1;
theta -= half_pi;
} else if (theta > half_pi + fourth_pi || theta <= -(half_pi + fourth_pi)) {
*area = area_2;
theta = (theta >= 0.0 ? theta - pi : theta + pi);
} else {
*area = area_3;
theta += half_pi;
}
}
return theta;
}
/* Helper function: shift the longitude. */
template <typename T>
inline T qsc_shift_lon_origin(T const& lon, T const& offset)
{
static const T pi = detail::pi<T>();
static const T two_pi = detail::two_pi<T>();
T slon = lon + offset;
if (slon < -pi) {
slon += two_pi;
} else if (slon > +pi) {
slon -= two_pi;
}
return slon;
}
/* Forward projection, ellipsoid */
template <typename T, typename Parameters>
struct base_qsc_ellipsoid
{
par_qsc<T> m_proj_parm;
// FORWARD(e_forward)
// Project coordinates from geographic (lon, lat) to cartesian (x, y)
inline void fwd(Parameters const& par, T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const
{
static const T fourth_pi = detail::fourth_pi<T>();
static const T half_pi = detail::half_pi<T>();
static const T pi = detail::pi<T>();
T lat, lon;
T theta, phi;
T t, mu; /* nu; */
area_type area;
/* Convert the geodetic latitude to a geocentric latitude.
* This corresponds to the shift from the ellipsoid to the sphere
* described in [LK12]. */
if (par.es != 0.0) {
lat = atan(this->m_proj_parm.one_minus_f_squared * tan(lp_lat));
} else {
lat = lp_lat;
}
/* Convert the input lat, lon into theta, phi as used by QSC.
* This depends on the cube face and the area on it.
* For the top and bottom face, we can compute theta and phi
* directly from phi, lam. For the other faces, we must use
* unit sphere cartesian coordinates as an intermediate step. */
lon = lp_lon;
if (this->m_proj_parm.face == face_top) {
phi = half_pi - lat;
if (lon >= fourth_pi && lon <= half_pi + fourth_pi) {
area = area_0;
theta = lon - half_pi;
} else if (lon > half_pi + fourth_pi || lon <= -(half_pi + fourth_pi)) {
area = area_1;
theta = (lon > 0.0 ? lon - pi : lon + pi);
} else if (lon > -(half_pi + fourth_pi) && lon <= -fourth_pi) {
area = area_2;
theta = lon + half_pi;
} else {
area = area_3;
theta = lon;
}
} else if (this->m_proj_parm.face == face_bottom) {
phi = half_pi + lat;
if (lon >= fourth_pi && lon <= half_pi + fourth_pi) {
area = area_0;
theta = -lon + half_pi;
} else if (lon < fourth_pi && lon >= -fourth_pi) {
area = area_1;
theta = -lon;
} else if (lon < -fourth_pi && lon >= -(half_pi + fourth_pi)) {
area = area_2;
theta = -lon - half_pi;
} else {
area = area_3;
theta = (lon > 0.0 ? -lon + pi : -lon - pi);
}
} else {
T q, r, s;
T sinlat, coslat;
T sinlon, coslon;
if (this->m_proj_parm.face == face_right) {
lon = qsc_shift_lon_origin(lon, +half_pi);
} else if (this->m_proj_parm.face == face_back) {
lon = qsc_shift_lon_origin(lon, +pi);
} else if (this->m_proj_parm.face == face_left) {
lon = qsc_shift_lon_origin(lon, -half_pi);
}
sinlat = sin(lat);
coslat = cos(lat);
sinlon = sin(lon);
coslon = cos(lon);
q = coslat * coslon;
r = coslat * sinlon;
s = sinlat;
if (this->m_proj_parm.face == face_front) {
phi = acos(q);
theta = qsc_fwd_equat_face_theta(phi, s, r, &area);
} else if (this->m_proj_parm.face == face_right) {
phi = acos(r);
theta = qsc_fwd_equat_face_theta(phi, s, -q, &area);
} else if (this->m_proj_parm.face == face_back) {
phi = acos(-q);
theta = qsc_fwd_equat_face_theta(phi, s, -r, &area);
} else if (this->m_proj_parm.face == face_left) {
phi = acos(-r);
theta = qsc_fwd_equat_face_theta(phi, s, q, &area);
} else {
/* Impossible */
phi = theta = 0.0;
area = area_0;
}
}
/* Compute mu and nu for the area of definition.
* For mu, see Eq. (3-21) in [OL76], but note the typos:
* compare with Eq. (3-14). For nu, see Eq. (3-38). */
mu = atan((12.0 / pi) * (theta + acos(sin(theta) * cos(fourth_pi)) - half_pi));
// TODO: (cos(mu) * cos(mu)) could be replaced with sqr(cos(mu))
t = sqrt((1.0 - cos(phi)) / (cos(mu) * cos(mu)) / (1.0 - cos(atan(1.0 / cos(theta)))));
/* nu = atan(t); We don't really need nu, just t, see below. */
/* Apply the result to the real area. */
if (area == area_1) {
mu += half_pi;
} else if (area == area_2) {
mu += pi;
} else if (area == area_3) {
mu += half_pi + pi;
}
/* Now compute x, y from mu and nu */
/* t = tan(nu); */
xy_x = t * cos(mu);
xy_y = t * sin(mu);
}
/* Inverse projection, ellipsoid */
// INVERSE(e_inverse)
// Project coordinates from cartesian (x, y) to geographic (lon, lat)
inline void inv(Parameters const& par, T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const
{
static const T half_pi = detail::half_pi<T>();
static const T pi = detail::pi<T>();
T mu, nu, cosmu, tannu;
T tantheta, theta, cosphi, phi;
T t;
int area;
/* Convert the input x, y to the mu and nu angles as used by QSC.
* This depends on the area of the cube face. */
nu = atan(sqrt(xy_x * xy_x + xy_y * xy_y));
mu = atan2(xy_y, xy_x);
if (xy_x >= 0.0 && xy_x >= fabs(xy_y)) {
area = area_0;
} else if (xy_y >= 0.0 && xy_y >= fabs(xy_x)) {
area = area_1;
mu -= half_pi;
} else if (xy_x < 0.0 && -xy_x >= fabs(xy_y)) {
area = area_2;
mu = (mu < 0.0 ? mu + pi : mu - pi);
} else {
area = area_3;
mu += half_pi;
}
/* Compute phi and theta for the area of definition.
* The inverse projection is not described in the original paper, but some
* good hints can be found here (as of 2011-12-14):
* http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9302
* (search for "Message-Id: <9302181759.AA25477 at fits.cv.nrao.edu>") */
t = (pi / 12.0) * tan(mu);
tantheta = sin(t) / (cos(t) - (1.0 / sqrt(2.0)));
theta = atan(tantheta);
cosmu = cos(mu);
tannu = tan(nu);
cosphi = 1.0 - cosmu * cosmu * tannu * tannu * (1.0 - cos(atan(1.0 / cos(theta))));
if (cosphi < -1.0) {
cosphi = -1.0;
} else if (cosphi > +1.0) {
cosphi = +1.0;
}
/* Apply the result to the real area on the cube face.
* For the top and bottom face, we can compute phi and lam directly.
* For the other faces, we must use unit sphere cartesian coordinates
* as an intermediate step. */
if (this->m_proj_parm.face == face_top) {
phi = acos(cosphi);
lp_lat = half_pi - phi;
if (area == area_0) {
lp_lon = theta + half_pi;
} else if (area == area_1) {
lp_lon = (theta < 0.0 ? theta + pi : theta - pi);
} else if (area == area_2) {
lp_lon = theta - half_pi;
} else /* area == AREA_3 */ {
lp_lon = theta;
}
} else if (this->m_proj_parm.face == face_bottom) {
phi = acos(cosphi);
lp_lat = phi - half_pi;
if (area == area_0) {
lp_lon = -theta + half_pi;
} else if (area == area_1) {
lp_lon = -theta;
} else if (area == area_2) {
lp_lon = -theta - half_pi;
} else /* area == area_3 */ {
lp_lon = (theta < 0.0 ? -theta - pi : -theta + pi);
}
} else {
/* Compute phi and lam via cartesian unit sphere coordinates. */
T q, r, s;
q = cosphi;
t = q * q;
if (t >= 1.0) {
s = 0.0;
} else {
s = sqrt(1.0 - t) * sin(theta);
}
t += s * s;
if (t >= 1.0) {
r = 0.0;
} else {
r = sqrt(1.0 - t);
}
/* Rotate q,r,s into the correct area. */
if (area == area_1) {
t = r;
r = -s;
s = t;
} else if (area == area_2) {
r = -r;
s = -s;
} else if (area == area_3) {
t = r;
r = s;
s = -t;
}
/* Rotate q,r,s into the correct cube face. */
if (this->m_proj_parm.face == face_right) {
t = q;
q = -r;
r = t;
} else if (this->m_proj_parm.face == face_back) {
q = -q;
r = -r;
} else if (this->m_proj_parm.face == face_left) {
t = q;
q = r;
r = -t;
}
/* Now compute phi and lam from the unit sphere coordinates. */
lp_lat = acos(-s) - half_pi;
lp_lon = atan2(r, q);
if (this->m_proj_parm.face == face_right) {
lp_lon = qsc_shift_lon_origin(lp_lon, -half_pi);
} else if (this->m_proj_parm.face == face_back) {
lp_lon = qsc_shift_lon_origin(lp_lon, -pi);
} else if (this->m_proj_parm.face == face_left) {
lp_lon = qsc_shift_lon_origin(lp_lon, +half_pi);
}
}
/* Apply the shift from the sphere to the ellipsoid as described
* in [LK12]. */
if (par.es != 0.0) {
int invert_sign;
T tanphi, xa;
invert_sign = (lp_lat < 0.0 ? 1 : 0);
tanphi = tan(lp_lat);
xa = this->m_proj_parm.b / sqrt(tanphi * tanphi + this->m_proj_parm.one_minus_f_squared);
lp_lat = atan(sqrt(par.a * par.a - xa * xa) / (this->m_proj_parm.one_minus_f * xa));
if (invert_sign) {
lp_lat = -lp_lat;
}
}
}
static inline std::string get_name()
{
return "qsc_ellipsoid";
}
};
// Quadrilateralized Spherical Cube
template <typename Parameters, typename T>
inline void setup_qsc(Parameters const& par, par_qsc<T>& proj_parm)
{
static const T fourth_pi = detail::fourth_pi<T>();
static const T half_pi = detail::half_pi<T>();
/* Determine the cube face from the center of projection. */
if (par.phi0 >= half_pi - fourth_pi / 2.0) {
proj_parm.face = face_top;
} else if (par.phi0 <= -(half_pi - fourth_pi / 2.0)) {
proj_parm.face = face_bottom;
} else if (fabs(par.lam0) <= fourth_pi) {
proj_parm.face = face_front;
} else if (fabs(par.lam0) <= half_pi + fourth_pi) {
proj_parm.face = (par.lam0 > 0.0 ? face_right : face_left);
} else {
proj_parm.face = face_back;
}
/* Fill in useful values for the ellipsoid <-> sphere shift
* described in [LK12]. */
if (par.es != 0.0) {
proj_parm.a_squared = par.a * par.a;
proj_parm.b = par.a * sqrt(1.0 - par.es);
proj_parm.one_minus_f = 1.0 - (par.a - proj_parm.b) / par.a;
proj_parm.one_minus_f_squared = proj_parm.one_minus_f * proj_parm.one_minus_f;
}
}
}} // namespace detail::qsc
#endif // doxygen
/*!
\brief Quadrilateralized Spherical Cube projection
\ingroup projections
\tparam Geographic latlong point type
\tparam Cartesian xy point type
\tparam Parameters parameter type
\par Projection characteristics
- Azimuthal
- Spheroid
\par Example
\image html ex_qsc.gif
*/
template <typename T, typename Parameters>
struct qsc_ellipsoid : public detail::qsc::base_qsc_ellipsoid<T, Parameters>
{
template <typename Params>
inline qsc_ellipsoid(Params const& , Parameters const& par)
{
detail::qsc::setup_qsc(par, this->m_proj_parm);
}
};
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
// Static projection
BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_qsc, qsc_ellipsoid)
// Factory entry(s)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(qsc_entry, qsc_ellipsoid)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(qsc_init)
{
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(qsc, qsc_entry)
}
} // namespace detail
#endif // doxygen
} // namespace projections
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_PROJECTIONS_QSC_HPP