libcarla/include/system/boost/geometry/srs/projections/proj/geos.hpp

371 lines
15 KiB
C++
Raw Normal View History

2024-10-18 13:19:59 +08:00
// Boost.Geometry - gis-projections (based on PROJ4)
// Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2017, 2018, 2019.
// Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This file is converted from PROJ4, http://trac.osgeo.org/proj
// PROJ4 is originally written by Gerald Evenden (then of the USGS)
// PROJ4 is maintained by Frank Warmerdam
// PROJ4 is converted to Boost.Geometry by Barend Gehrels
// Last updated version of proj: 5.0.0
// Original copyright notice:
// Copyright (c) 2004 Gerald I. Evenden
// Copyright (c) 2012 Martin Raspaud
// See also (section 4.4.3.2):
// http://www.eumetsat.int/en/area4/msg/news/us_doc/cgms_03_26.pdf
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#ifndef BOOST_GEOMETRY_PROJECTIONS_GEOS_HPP
#define BOOST_GEOMETRY_PROJECTIONS_GEOS_HPP
#include <boost/math/special_functions/hypot.hpp>
#include <boost/geometry/srs/projections/impl/base_static.hpp>
#include <boost/geometry/srs/projections/impl/base_dynamic.hpp>
#include <boost/geometry/srs/projections/impl/projects.hpp>
#include <boost/geometry/srs/projections/impl/factory_entry.hpp>
#include <boost/geometry/srs/projections/impl/pj_param.hpp>
namespace boost { namespace geometry
{
namespace projections
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace geos
{
template <typename T>
struct par_geos
{
T h;
T radius_p;
T radius_p2;
T radius_p_inv2;
T radius_g;
T radius_g_1;
T C;
bool flip_axis;
};
template <typename T, typename Parameters>
struct base_geos_ellipsoid
{
par_geos<T> m_proj_parm;
// FORWARD(e_forward) ellipsoid
// Project coordinates from geographic (lon, lat) to cartesian (x, y)
inline void fwd(Parameters const& , T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const
{
T r, Vx, Vy, Vz, tmp;
/* Calculation of geocentric latitude. */
lp_lat = atan (this->m_proj_parm.radius_p2 * tan (lp_lat));
/* Calculation of the three components of the vector from satellite to
** position on earth surface (lon,lat).*/
r = (this->m_proj_parm.radius_p) / boost::math::hypot(this->m_proj_parm.radius_p * cos (lp_lat), sin (lp_lat));
Vx = r * cos (lp_lon) * cos (lp_lat);
Vy = r * sin (lp_lon) * cos (lp_lat);
Vz = r * sin (lp_lat);
/* Check visibility. */
if (((this->m_proj_parm.radius_g - Vx) * Vx - Vy * Vy - Vz * Vz * this->m_proj_parm.radius_p_inv2) < 0.) {
BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) );
}
/* Calculation based on view angles from satellite. */
tmp = this->m_proj_parm.radius_g - Vx;
if(this->m_proj_parm.flip_axis) {
xy_x = this->m_proj_parm.radius_g_1 * atan (Vy / boost::math::hypot (Vz, tmp));
xy_y = this->m_proj_parm.radius_g_1 * atan (Vz / tmp);
} else {
xy_x = this->m_proj_parm.radius_g_1 * atan (Vy / tmp);
xy_y = this->m_proj_parm.radius_g_1 * atan (Vz / boost::math::hypot (Vy, tmp));
}
}
// INVERSE(e_inverse) ellipsoid
// Project coordinates from cartesian (x, y) to geographic (lon, lat)
inline void inv(Parameters const& , T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const
{
T Vx, Vy, Vz, a, b, det, k;
/* Setting three components of vector from satellite to position.*/
Vx = -1.0;
if(this->m_proj_parm.flip_axis) {
Vz = tan (xy_y / this->m_proj_parm.radius_g_1);
Vy = tan (xy_x / this->m_proj_parm.radius_g_1) * boost::math::hypot(1.0, Vz);
} else {
Vy = tan (xy_x / this->m_proj_parm.radius_g_1);
Vz = tan (xy_y / this->m_proj_parm.radius_g_1) * boost::math::hypot(1.0, Vy);
}
/* Calculation of terms in cubic equation and determinant.*/
a = Vz / this->m_proj_parm.radius_p;
a = Vy * Vy + a * a + Vx * Vx;
b = 2 * this->m_proj_parm.radius_g * Vx;
if ((det = (b * b) - 4 * a * this->m_proj_parm.C) < 0.) {
BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) );
}
/* Calculation of three components of vector from satellite to position.*/
k = (-b - sqrt(det)) / (2. * a);
Vx = this->m_proj_parm.radius_g + k * Vx;
Vy *= k;
Vz *= k;
/* Calculation of longitude and latitude.*/
lp_lon = atan2 (Vy, Vx);
lp_lat = atan (Vz * cos (lp_lon) / Vx);
lp_lat = atan (this->m_proj_parm.radius_p_inv2 * tan (lp_lat));
}
static inline std::string get_name()
{
return "geos_ellipsoid";
}
};
template <typename T, typename Parameters>
struct base_geos_spheroid
{
par_geos<T> m_proj_parm;
// FORWARD(s_forward) spheroid
// Project coordinates from geographic (lon, lat) to cartesian (x, y)
inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const
{
T Vx, Vy, Vz, tmp;
/* Calculation of the three components of the vector from satellite to
** position on earth surface (lon,lat).*/
tmp = cos(lp_lat);
Vx = cos (lp_lon) * tmp;
Vy = sin (lp_lon) * tmp;
Vz = sin (lp_lat);
/* Check visibility.*/
// TODO: in proj4 5.0.0 this check is not present
if (((this->m_proj_parm.radius_g - Vx) * Vx - Vy * Vy - Vz * Vz) < 0.)
BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) );
/* Calculation based on view angles from satellite.*/
tmp = this->m_proj_parm.radius_g - Vx;
if(this->m_proj_parm.flip_axis) {
xy_x = this->m_proj_parm.radius_g_1 * atan(Vy / boost::math::hypot(Vz, tmp));
xy_y = this->m_proj_parm.radius_g_1 * atan(Vz / tmp);
} else {
xy_x = this->m_proj_parm.radius_g_1 * atan(Vy / tmp);
xy_y = this->m_proj_parm.radius_g_1 * atan(Vz / boost::math::hypot(Vy, tmp));
}
}
// INVERSE(s_inverse) spheroid
// Project coordinates from cartesian (x, y) to geographic (lon, lat)
inline void inv(Parameters const& , T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const
{
T Vx, Vy, Vz, a, b, det, k;
/* Setting three components of vector from satellite to position.*/
Vx = -1.0;
if(this->m_proj_parm.flip_axis) {
Vz = tan (xy_y / (this->m_proj_parm.radius_g - 1.0));
Vy = tan (xy_x / (this->m_proj_parm.radius_g - 1.0)) * sqrt (1.0 + Vz * Vz);
} else {
Vy = tan (xy_x / (this->m_proj_parm.radius_g - 1.0));
Vz = tan (xy_y / (this->m_proj_parm.radius_g - 1.0)) * sqrt (1.0 + Vy * Vy);
}
/* Calculation of terms in cubic equation and determinant.*/
a = Vy * Vy + Vz * Vz + Vx * Vx;
b = 2 * this->m_proj_parm.radius_g * Vx;
if ((det = (b * b) - 4 * a * this->m_proj_parm.C) < 0.) {
BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) );
}
/* Calculation of three components of vector from satellite to position.*/
k = (-b - sqrt(det)) / (2 * a);
Vx = this->m_proj_parm.radius_g + k * Vx;
Vy *= k;
Vz *= k;
/* Calculation of longitude and latitude.*/
lp_lon = atan2 (Vy, Vx);
lp_lat = atan (Vz * cos (lp_lon) / Vx);
}
static inline std::string get_name()
{
return "geos_spheroid";
}
};
inline bool geos_flip_axis(srs::detail::proj4_parameters const& params)
{
std::string sweep_axis = pj_get_param_s(params, "sweep");
if (sweep_axis.empty())
return false;
else {
if (sweep_axis[1] != '\0' || (sweep_axis[0] != 'x' && sweep_axis[0] != 'y'))
BOOST_THROW_EXCEPTION( projection_exception(error_invalid_sweep_axis) );
if (sweep_axis[0] == 'x')
return true;
else
return false;
}
}
template <typename T>
inline bool geos_flip_axis(srs::dpar::parameters<T> const& params)
{
typename srs::dpar::parameters<T>::const_iterator
it = pj_param_find(params, srs::dpar::sweep);
if (it == params.end()) {
return false;
} else {
srs::dpar::value_sweep s = static_cast<srs::dpar::value_sweep>(it->template get_value<int>());
return s == srs::dpar::sweep_x;
}
}
// Geostationary Satellite View
template <typename Params, typename Parameters, typename T>
inline void setup_geos(Params const& params, Parameters& par, par_geos<T>& proj_parm)
{
std::string sweep_axis;
if ((proj_parm.h = pj_get_param_f<T, srs::spar::h>(params, "h", srs::dpar::h)) <= 0.)
BOOST_THROW_EXCEPTION( projection_exception(error_h_less_than_zero) );
if (par.phi0 != 0.0)
BOOST_THROW_EXCEPTION( projection_exception(error_unknown_prime_meridian) );
proj_parm.flip_axis = geos_flip_axis(params);
proj_parm.radius_g_1 = proj_parm.h / par.a;
proj_parm.radius_g = 1. + proj_parm.radius_g_1;
proj_parm.C = proj_parm.radius_g * proj_parm.radius_g - 1.0;
if (par.es != 0.0) {
proj_parm.radius_p = sqrt (par.one_es);
proj_parm.radius_p2 = par.one_es;
proj_parm.radius_p_inv2 = par.rone_es;
} else {
proj_parm.radius_p = proj_parm.radius_p2 = proj_parm.radius_p_inv2 = 1.0;
}
}
}} // namespace detail::geos
#endif // doxygen
/*!
\brief Geostationary Satellite View projection
\ingroup projections
\tparam Geographic latlong point type
\tparam Cartesian xy point type
\tparam Parameters parameter type
\par Projection characteristics
- Azimuthal
- Spheroid
- Ellipsoid
\par Projection parameters
- h: Height (real)
- sweep: Sweep axis ('x' or 'y') (string)
\par Example
\image html ex_geos.gif
*/
template <typename T, typename Parameters>
struct geos_ellipsoid : public detail::geos::base_geos_ellipsoid<T, Parameters>
{
template <typename Params>
inline geos_ellipsoid(Params const& params, Parameters const& par)
{
detail::geos::setup_geos(params, par, this->m_proj_parm);
}
};
/*!
\brief Geostationary Satellite View projection
\ingroup projections
\tparam Geographic latlong point type
\tparam Cartesian xy point type
\tparam Parameters parameter type
\par Projection characteristics
- Azimuthal
- Spheroid
- Ellipsoid
\par Projection parameters
- h: Height (real)
- sweep: Sweep axis ('x' or 'y') (string)
\par Example
\image html ex_geos.gif
*/
template <typename T, typename Parameters>
struct geos_spheroid : public detail::geos::base_geos_spheroid<T, Parameters>
{
template <typename Params>
inline geos_spheroid(Params const& params, Parameters const& par)
{
detail::geos::setup_geos(params, par, this->m_proj_parm);
}
};
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
// Static projection
BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_geos, geos_spheroid, geos_ellipsoid)
// Factory entry(s)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(geos_entry, geos_spheroid, geos_ellipsoid)
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(geos_init)
{
BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(geos, geos_entry);
}
} // namespace detail
#endif // doxygen
} // namespace projections
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_PROJECTIONS_GEOS_HPP