libcarla/include/system/boost/geometry/formulas/interpolate_point_spherical.hpp

111 lines
3.6 KiB
C++
Raw Normal View History

2024-10-18 13:19:59 +08:00
// Boost.Geometry
// Copyright (c) 2019-2021 Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_FORMULAS_INTERPOLATE_POINT_SPHERICAL_HPP
#define BOOST_GEOMETRY_FORMULAS_INTERPOLATE_POINT_SPHERICAL_HPP
#include <boost/geometry/formulas/spherical.hpp>
#include <boost/geometry/geometries/point.hpp>
namespace boost { namespace geometry { namespace formula
{
template <typename CalculationType>
class interpolate_point_spherical
{
typedef model::point<CalculationType, 3, cs::cartesian> point3d_t;
public :
template <typename Point>
void compute_angle(Point const& p0,
Point const& p1,
CalculationType& angle01)
{
m_xyz0 = formula::sph_to_cart3d<point3d_t>(p0);
m_xyz1 = formula::sph_to_cart3d<point3d_t>(p1);
CalculationType const dot01 = geometry::dot_product(m_xyz0, m_xyz1);
angle01 = acos(dot01);
}
template <typename Point>
void compute_axis(Point const& p0,
CalculationType const& angle01)
{
CalculationType const c0 = 0, c1 = 1;
CalculationType const pi = math::pi<CalculationType>();
if (! math::equals(angle01, pi))
{
m_axis = geometry::cross_product(m_xyz0, m_xyz1);
geometry::detail::vec_normalize(m_axis);
}
else // antipodal
{
CalculationType const half_pi = math::half_pi<CalculationType>();
CalculationType const lat = geometry::get_as_radian<1>(p0);
if (math::equals(lat, half_pi))
{
// pointing east, segment lies on prime meridian, going south
m_axis = point3d_t(c0, c1, c0);
}
else if (math::equals(lat, -half_pi))
{
// pointing west, segment lies on prime meridian, going north
m_axis = point3d_t(c0, -c1, c0);
}
else
{
// lon rotated west by pi/2 at equator
CalculationType const lon = geometry::get_as_radian<0>(p0);
m_axis = point3d_t(sin(lon), -cos(lon), c0);
}
}
}
template <typename Point>
void compute_point(CalculationType const& a, Point& p)
{
CalculationType const c1 = 1;
// Axis-Angle rotation
// see: https://en.wikipedia.org/wiki/Axis-angle_representation
CalculationType const cos_a = cos(a);
CalculationType const sin_a = sin(a);
// cos_a * v
point3d_t s1 = m_xyz0;
geometry::multiply_value(s1, cos_a);
// sin_a * (n x v)
point3d_t s2 = geometry::cross_product(m_axis, m_xyz0);
geometry::multiply_value(s2, sin_a);
// (1 - cos_a)(n.v) * n
point3d_t s3 = m_axis;
geometry::multiply_value(s3, (c1 - cos_a) *
geometry::dot_product(m_axis, m_xyz0));
// v_rot = cos_a * v + sin_a * (n x v) + (1 - cos_a)(n.v) * e
point3d_t v_rot = s1;
geometry::add_point(v_rot, s2);
geometry::add_point(v_rot, s3);
p = formula::cart3d_to_sph<Point>(v_rot);
}
private :
point3d_t m_xyz0;
point3d_t m_xyz1;
point3d_t m_axis;
};
}}} // namespace boost::geometry::formula
#endif // BOOST_GEOMETRY_FORMULAS_INTERPOLATE_POINT_SPHERICAL_HPP