libcarla/include/system/boost/math/differentiation/lanczos_smoothing.hpp

583 lines
20 KiB
C++
Raw Normal View History

2024-10-18 13:19:59 +08:00
// (C) Copyright Nick Thompson 2019.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP
#define BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP
#include <cmath> // for std::abs
#include <cstddef>
#include <limits> // to nan initialize
#include <vector>
#include <string>
#include <stdexcept>
#include <type_traits>
#include <boost/math/tools/assert.hpp>
namespace boost::math::differentiation {
namespace detail {
template <typename Real>
class discrete_legendre {
public:
explicit discrete_legendre(std::size_t n, Real x) : m_n{n}, m_r{2}, m_x{x},
m_qrm2{1}, m_qrm1{x},
m_qrm2p{0}, m_qrm1p{1},
m_qrm2pp{0}, m_qrm1pp{0}
{
using std::abs;
BOOST_MATH_ASSERT_MSG(abs(m_x) <= 1, "Three term recurrence is stable only for |x| <=1.");
// The integer n indexes a family of discrete Legendre polynomials indexed by k <= 2*n
}
Real norm_sq(int r) const
{
Real prod = Real(2) / Real(2 * r + 1);
for (int k = -r; k <= r; ++k) {
prod *= Real(2 * m_n + 1 + k) / Real(2 * m_n);
}
return prod;
}
Real next()
{
Real N = 2 * m_n + 1;
Real num = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) * m_qrm2;
Real tmp = (2 * m_r - 1) * m_x * m_qrm1 - num / Real(4 * m_n * m_n);
m_qrm2 = m_qrm1;
m_qrm1 = tmp / m_r;
++m_r;
return m_qrm1;
}
Real next_prime()
{
Real N = 2 * m_n + 1;
Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);
Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;
Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;
m_qrm2 = m_qrm1;
m_qrm1 = tmp1;
m_qrm2p = m_qrm1p;
m_qrm1p = tmp2;
++m_r;
return m_qrm1p;
}
Real next_dbl_prime()
{
Real N = 2*m_n + 1;
Real trm1 = 2*m_r - 1;
Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);
Real rqrpp = 2*trm1*m_qrm1p + trm1*m_x*m_qrm1pp - s*m_qrm2pp;
Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;
Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;
m_qrm2 = m_qrm1;
m_qrm1 = tmp1;
m_qrm2p = m_qrm1p;
m_qrm1p = tmp2;
m_qrm2pp = m_qrm1pp;
m_qrm1pp = rqrpp/m_r;
++m_r;
return m_qrm1pp;
}
Real operator()(Real x, std::size_t k)
{
BOOST_MATH_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");
if (k == 0)
{
return 1;
}
if (k == 1)
{
return x;
}
Real qrm2 = 1;
Real qrm1 = x;
Real N = 2 * m_n + 1;
for (std::size_t r = 2; r <= k; ++r) {
Real num = (r - 1) * (N * N - (r - 1) * (r - 1)) * qrm2;
Real tmp = (2 * r - 1) * x * qrm1 - num / Real(4 * m_n * m_n);
qrm2 = qrm1;
qrm1 = tmp / r;
}
return qrm1;
}
Real prime(Real x, std::size_t k) {
BOOST_MATH_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");
if (k == 0) {
return 0;
}
if (k == 1) {
return 1;
}
Real qrm2 = 1;
Real qrm1 = x;
Real qrm2p = 0;
Real qrm1p = 1;
Real N = 2 * m_n + 1;
for (std::size_t r = 2; r <= k; ++r) {
Real s =
(r - 1) * (N * N - (r - 1) * (r - 1)) / Real(4 * m_n * m_n);
Real tmp1 = ((2 * r - 1) * x * qrm1 - s * qrm2) / r;
Real tmp2 = ((2 * r - 1) * (qrm1 + x * qrm1p) - s * qrm2p) / r;
qrm2 = qrm1;
qrm1 = tmp1;
qrm2p = qrm1p;
qrm1p = tmp2;
}
return qrm1p;
}
private:
std::size_t m_n;
std::size_t m_r;
Real m_x;
Real m_qrm2;
Real m_qrm1;
Real m_qrm2p;
Real m_qrm1p;
Real m_qrm2pp;
Real m_qrm1pp;
};
template <class Real>
std::vector<Real> interior_velocity_filter(std::size_t n, std::size_t p) {
auto dlp = discrete_legendre<Real>(n, 0);
std::vector<Real> coeffs(p+1);
coeffs[1] = 1/dlp.norm_sq(1);
for (std::size_t l = 3; l < p + 1; l += 2)
{
dlp.next_prime();
coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);
}
// We could make the filter length n, as f[0] = 0,
// but that'd make the indexing awkward when applying the filter.
std::vector<Real> f(n + 1);
// This value should never be read, but this is the correct value *if it is read*.
// Hmm, should it be a nan then? I'm not gonna agonize.
f[0] = 0;
for (std::size_t j = 1; j < f.size(); ++j)
{
Real arg = Real(j) / Real(n);
dlp = discrete_legendre<Real>(n, arg);
f[j] = coeffs[1]*arg;
for (std::size_t l = 3; l <= p; l += 2)
{
dlp.next();
f[j] += coeffs[l]*dlp.next();
}
f[j] /= (n * n);
}
return f;
}
template <class Real>
std::vector<Real> boundary_velocity_filter(std::size_t n, std::size_t p, int64_t s)
{
std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());
Real sn = Real(s) / Real(n);
auto dlp = discrete_legendre<Real>(n, sn);
coeffs[0] = 0;
coeffs[1] = 1/dlp.norm_sq(1);
for (std::size_t l = 2; l < p + 1; ++l)
{
// Calculation of the norms is common to all filters,
// so it seems like an obvious optimization target.
// I tried this: The spent in computing the norms time is not negligible,
// but still a small fraction of the total compute time.
// Hence I'm not refactoring out these norm calculations.
coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);
}
std::vector<Real> f(2*n + 1);
for (std::size_t k = 0; k < f.size(); ++k)
{
Real j = Real(k) - Real(n);
Real arg = j/Real(n);
dlp = discrete_legendre<Real>(n, arg);
f[k] = coeffs[1]*arg;
for (std::size_t l = 2; l <= p; ++l)
{
f[k] += coeffs[l]*dlp.next();
}
f[k] /= (n * n);
}
return f;
}
template <class Real>
std::vector<Real> acceleration_filter(std::size_t n, std::size_t p, int64_t s)
{
BOOST_MATH_ASSERT_MSG(p <= 2*n, "Approximation order must be <= 2*n");
BOOST_MATH_ASSERT_MSG(p > 2, "Approximation order must be > 2");
std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());
Real sn = Real(s) / Real(n);
auto dlp = discrete_legendre<Real>(n, sn);
coeffs[0] = 0;
coeffs[1] = 0;
for (std::size_t l = 2; l < p + 1; ++l)
{
coeffs[l] = dlp.next_dbl_prime()/ dlp.norm_sq(l);
}
std::vector<Real> f(2*n + 1, 0);
for (std::size_t k = 0; k < f.size(); ++k)
{
Real j = Real(k) - Real(n);
Real arg = j/Real(n);
dlp = discrete_legendre<Real>(n, arg);
for (std::size_t l = 2; l <= p; ++l)
{
f[k] += coeffs[l]*dlp.next();
}
f[k] /= (n * n * n);
}
return f;
}
} // namespace detail
template <typename Real, std::size_t order = 1>
class discrete_lanczos_derivative {
public:
discrete_lanczos_derivative(Real const & spacing,
std::size_t n = 18,
std::size_t approximation_order = 3)
: m_dt{spacing}
{
static_assert(!std::is_integral_v<Real>,
"Spacing must be a floating point type.");
BOOST_MATH_ASSERT_MSG(spacing > 0,
"Spacing between samples must be > 0.");
if constexpr (order == 1)
{
BOOST_MATH_ASSERT_MSG(approximation_order <= 2 * n,
"The approximation order must be <= 2n");
BOOST_MATH_ASSERT_MSG(approximation_order >= 2,
"The approximation order must be >= 2");
if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)
{
auto interior = detail::interior_velocity_filter<long double>(n, approximation_order);
m_f.resize(interior.size());
for (std::size_t j = 0; j < interior.size(); ++j)
{
m_f[j] = static_cast<Real>(interior[j])/m_dt;
}
}
else
{
m_f = detail::interior_velocity_filter<Real>(n, approximation_order);
for (auto & x : m_f)
{
x /= m_dt;
}
}
m_boundary_filters.resize(n);
// This for loop is a natural candidate for parallelization.
// But does it matter? Probably not.
for (std::size_t i = 0; i < n; ++i)
{
if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)
{
int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
auto bf = detail::boundary_velocity_filter<long double>(n, approximation_order, s);
m_boundary_filters[i].resize(bf.size());
for (std::size_t j = 0; j < bf.size(); ++j)
{
m_boundary_filters[i][j] = static_cast<Real>(bf[j])/m_dt;
}
}
else
{
int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
m_boundary_filters[i] = detail::boundary_velocity_filter<Real>(n, approximation_order, s);
for (auto & bf : m_boundary_filters[i])
{
bf /= m_dt;
}
}
}
}
else if constexpr (order == 2)
{
// High precision isn't warranted for small p; only for large p.
// (The computation appears stable for large n.)
// But given that the filters are reusable for many vectors,
// it's better to do a high precision computation and then cast back,
// since the resulting cost is a factor of 2, and the cost of the filters not working is hours of debugging.
if constexpr (std::is_same_v<Real, double> || std::is_same_v<Real, float>)
{
auto f = detail::acceleration_filter<long double>(n, approximation_order, 0);
m_f.resize(n+1);
for (std::size_t i = 0; i < m_f.size(); ++i)
{
m_f[i] = static_cast<Real>(f[i+n])/(m_dt*m_dt);
}
m_boundary_filters.resize(n);
for (std::size_t i = 0; i < n; ++i)
{
int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
auto bf = detail::acceleration_filter<long double>(n, approximation_order, s);
m_boundary_filters[i].resize(bf.size());
for (std::size_t j = 0; j < bf.size(); ++j)
{
m_boundary_filters[i][j] = static_cast<Real>(bf[j])/(m_dt*m_dt);
}
}
}
else
{
// Given that the purpose is denoising, for higher precision calculations,
// the default precision should be fine.
auto f = detail::acceleration_filter<Real>(n, approximation_order, 0);
m_f.resize(n+1);
for (std::size_t i = 0; i < m_f.size(); ++i)
{
m_f[i] = f[i+n]/(m_dt*m_dt);
}
m_boundary_filters.resize(n);
for (std::size_t i = 0; i < n; ++i)
{
int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
m_boundary_filters[i] = detail::acceleration_filter<Real>(n, approximation_order, s);
for (auto & bf : m_boundary_filters[i])
{
bf /= (m_dt*m_dt);
}
}
}
}
else
{
BOOST_MATH_ASSERT_MSG(false, "Derivatives of order 3 and higher are not implemented.");
}
}
Real get_spacing() const
{
return m_dt;
}
template<class RandomAccessContainer>
Real operator()(RandomAccessContainer const & v, std::size_t i) const
{
static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,
"The type of the values in the vector provided does not match the type in the filters.");
BOOST_MATH_ASSERT_MSG(std::size(v) >= m_boundary_filters[0].size(),
"Vector must be at least as long as the filter length");
if constexpr (order==1)
{
if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())
{
// The filter has length >= 1:
Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);
for (std::size_t j = 2; j < m_f.size(); ++j)
{
dvdt += m_f[j] * (v[i + j] - v[i - j]);
}
return dvdt;
}
// m_f.size() = N+1
if (i < m_f.size() - 1)
{
auto &bf = m_boundary_filters[i];
Real dvdt = bf[0]*v[0];
for (std::size_t j = 1; j < bf.size(); ++j)
{
dvdt += bf[j] * v[j];
}
return dvdt;
}
if (i > std::size(v) - m_f.size() && i < std::size(v))
{
int k = std::size(v) - 1 - i;
auto &bf = m_boundary_filters[k];
Real dvdt = bf[0]*v[std::size(v)-1];
for (std::size_t j = 1; j < bf.size(); ++j)
{
dvdt += bf[j] * v[std::size(v) - 1 - j];
}
return -dvdt;
}
}
else if constexpr (order==2)
{
if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())
{
Real d2vdt2 = m_f[0]*v[i];
for (std::size_t j = 1; j < m_f.size(); ++j)
{
d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);
}
return d2vdt2;
}
// m_f.size() = N+1
if (i < m_f.size() - 1)
{
auto &bf = m_boundary_filters[i];
Real d2vdt2 = bf[0]*v[0];
for (std::size_t j = 1; j < bf.size(); ++j)
{
d2vdt2 += bf[j] * v[j];
}
return d2vdt2;
}
if (i > std::size(v) - m_f.size() && i < std::size(v))
{
int k = std::size(v) - 1 - i;
auto &bf = m_boundary_filters[k];
Real d2vdt2 = bf[0] * v[std::size(v) - 1];
for (std::size_t j = 1; j < bf.size(); ++j)
{
d2vdt2 += bf[j] * v[std::size(v) - 1 - j];
}
return d2vdt2;
}
}
// OOB access:
std::string msg = "Out of bounds access in Lanczos derivative.";
msg += "Input vector has length " + std::to_string(std::size(v)) + ", but user requested access at index " + std::to_string(i) + ".";
throw std::out_of_range(msg);
return std::numeric_limits<Real>::quiet_NaN();
}
template<class RandomAccessContainer>
void operator()(RandomAccessContainer const & v, RandomAccessContainer & w) const
{
static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,
"The type of the values in the vector provided does not match the type in the filters.");
if (&w[0] == &v[0])
{
throw std::logic_error("This transform cannot be performed in-place.");
}
if (std::size(v) < m_boundary_filters[0].size())
{
std::string msg = "The input vector must be at least as long as the filter length. ";
msg += "The input vector has length = " + std::to_string(std::size(v)) + ", the filter has length " + std::to_string(m_boundary_filters[0].size());
throw std::length_error(msg);
}
if (std::size(w) < std::size(v))
{
std::string msg = "The output vector (containing the derivative) must be at least as long as the input vector.";
msg += "The output vector has length = " + std::to_string(std::size(w)) + ", the input vector has length " + std::to_string(std::size(v));
throw std::length_error(msg);
}
if constexpr (order==1)
{
for (std::size_t i = 0; i < m_f.size() - 1; ++i)
{
auto &bf = m_boundary_filters[i];
Real dvdt = bf[0] * v[0];
for (std::size_t j = 1; j < bf.size(); ++j)
{
dvdt += bf[j] * v[j];
}
w[i] = dvdt;
}
for(std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)
{
Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);
for (std::size_t j = 2; j < m_f.size(); ++j)
{
dvdt += m_f[j] *(v[i + j] - v[i - j]);
}
w[i] = dvdt;
}
for(std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)
{
int k = std::size(v) - 1 - i;
auto &f = m_boundary_filters[k];
Real dvdt = f[0] * v[std::size(v) - 1];;
for (std::size_t j = 1; j < f.size(); ++j)
{
dvdt += f[j] * v[std::size(v) - 1 - j];
}
w[i] = -dvdt;
}
}
else if constexpr (order==2)
{
// m_f.size() = N+1
for (std::size_t i = 0; i < m_f.size() - 1; ++i)
{
auto &bf = m_boundary_filters[i];
Real d2vdt2 = 0;
for (std::size_t j = 0; j < bf.size(); ++j)
{
d2vdt2 += bf[j] * v[j];
}
w[i] = d2vdt2;
}
for (std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)
{
Real d2vdt2 = m_f[0]*v[i];
for (std::size_t j = 1; j < m_f.size(); ++j)
{
d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);
}
w[i] = d2vdt2;
}
for (std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)
{
int k = std::size(v) - 1 - i;
auto &bf = m_boundary_filters[k];
Real d2vdt2 = bf[0] * v[std::size(v) - 1];
for (std::size_t j = 1; j < bf.size(); ++j)
{
d2vdt2 += bf[j] * v[std::size(v) - 1 - j];
}
w[i] = d2vdt2;
}
}
}
template<class RandomAccessContainer>
RandomAccessContainer operator()(RandomAccessContainer const & v) const
{
RandomAccessContainer w(std::size(v));
this->operator()(v, w);
return w;
}
// Don't copy; too big.
discrete_lanczos_derivative( const discrete_lanczos_derivative & ) = delete;
discrete_lanczos_derivative& operator=(const discrete_lanczos_derivative&) = delete;
// Allow moves:
discrete_lanczos_derivative(discrete_lanczos_derivative&&) = default;
discrete_lanczos_derivative& operator=(discrete_lanczos_derivative&&) = default;
private:
std::vector<Real> m_f;
std::vector<std::vector<Real>> m_boundary_filters;
Real m_dt;
};
} // namespaces
#endif