180 lines
6.8 KiB
C++
180 lines
6.8 KiB
C++
|
//
|
||
|
// Copyright 2020 Olzhas Zhumabek <anonymous.from.applecity@gmail.com>
|
||
|
//
|
||
|
// Use, modification and distribution are subject to the Boost Software License,
|
||
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
||
|
// http://www.boost.org/LICENSE_1_0.txt)
|
||
|
//
|
||
|
#ifndef BOOST_GIL_EXTENSION_RASTERIZATION_CIRCLE_HPP
|
||
|
#define BOOST_GIL_EXTENSION_RASTERIZATION_CIRCLE_HPP
|
||
|
|
||
|
#include <boost/gil/detail/math.hpp>
|
||
|
#include <boost/gil/extension/rasterization/apply_rasterizer.hpp>
|
||
|
#include <boost/gil/point.hpp>
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <cstddef>
|
||
|
#include <vector>
|
||
|
|
||
|
namespace boost { namespace gil {
|
||
|
|
||
|
struct circle_rasterizer_t{};
|
||
|
|
||
|
/// \defgroup CircleRasterization
|
||
|
/// \ingroup Rasterization
|
||
|
/// \brief Circle rasterization algorithms
|
||
|
///
|
||
|
/// The main problems are connectivity and equation following. Circle can be easily moved
|
||
|
/// to new offset, and rotation has no effect on it (not recommended to do rotation).
|
||
|
|
||
|
/// \ingroup CircleRasterization
|
||
|
/// \brief Rasterize trigonometric circle according to radius by sine and radius by cosine
|
||
|
///
|
||
|
/// This rasterizer is the one used that is used in standard Hough circle transform in
|
||
|
/// the books. It is also quite expensive to compute.
|
||
|
/// WARNING: the product of this rasterizer does not follow circle equation, even though it
|
||
|
/// produces quite round like shapes.
|
||
|
struct trigonometric_circle_rasterizer
|
||
|
{
|
||
|
using type = circle_rasterizer_t;
|
||
|
|
||
|
/// \brief Creates a trigonometric circle rasterizer
|
||
|
/// \param center_point - Point containing positive integer x co-ordinate and y co-ordinate of the
|
||
|
/// center respectively.
|
||
|
/// \param circle_radius - Radius of the circle
|
||
|
trigonometric_circle_rasterizer(point_t center_point, std::ptrdiff_t circle_radius)
|
||
|
: center(center_point), radius(circle_radius)
|
||
|
{}
|
||
|
|
||
|
/// \brief Calculates minimum angle step that is distinguishable when walking on circle
|
||
|
///
|
||
|
/// It is important to not have disconnected circle and to not compute unnecessarily,
|
||
|
/// thus the result of this function is used when rendering.
|
||
|
double minimum_angle_step() const noexcept
|
||
|
{
|
||
|
const auto diameter = radius * 2 - 1;
|
||
|
return std::atan2(1.0, diameter);
|
||
|
}
|
||
|
|
||
|
/// \brief Calculate the amount of points that rasterizer will output
|
||
|
std::ptrdiff_t point_count() const noexcept
|
||
|
{
|
||
|
return 8 * static_cast<std::ptrdiff_t>(
|
||
|
std::round(detail::pi / 4 / minimum_angle_step()) + 1);
|
||
|
}
|
||
|
|
||
|
/// \brief perform rasterization and output into d_first
|
||
|
template <typename OutputIterator>
|
||
|
void operator()(OutputIterator d_first) const
|
||
|
{
|
||
|
const double minimum_angle_step = std::atan2(1.0, radius);
|
||
|
auto translate_mirror_points = [this, &d_first](point_t p) {
|
||
|
*d_first++ = point_t{center.x + p.x, center.y + p.y};
|
||
|
*d_first++ = point_t{center.x + p.x, center.y - p.y};
|
||
|
*d_first++ = point_t{center.x - p.x, center.y + p.y};
|
||
|
*d_first++ = point_t{center.x - p.x, center.y - p.y};
|
||
|
*d_first++ = point_t{center.x + p.y, center.y + p.x};
|
||
|
*d_first++ = point_t{center.x + p.y, center.y - p.x};
|
||
|
*d_first++ = point_t{center.x - p.y, center.y + p.x};
|
||
|
*d_first++ = point_t{center.x - p.y, center.y - p.x};
|
||
|
};
|
||
|
const std::ptrdiff_t iteration_count = point_count() / 8;
|
||
|
double angle = 0;
|
||
|
// do note that + 1 was done inside count estimation, thus <= is not needed, only <
|
||
|
for (std::ptrdiff_t i = 0; i < iteration_count; ++i, angle += minimum_angle_step)
|
||
|
{
|
||
|
std::ptrdiff_t x = static_cast<std::ptrdiff_t>(std::round(radius * std::cos(angle)));
|
||
|
std::ptrdiff_t y = static_cast<std::ptrdiff_t>(std::round(radius * std::sin(angle)));
|
||
|
translate_mirror_points({x, y});
|
||
|
}
|
||
|
}
|
||
|
|
||
|
point_t center;
|
||
|
std::ptrdiff_t radius;
|
||
|
};
|
||
|
|
||
|
/// \ingroup CircleRasterization
|
||
|
/// \brief Perform circle rasterization according to Midpoint algorithm
|
||
|
///
|
||
|
/// This algorithm givess reasonable output and is cheap to compute.
|
||
|
/// reference:
|
||
|
/// https://en.wikipedia.org/wiki/Midpoint_circle_algorithm
|
||
|
struct midpoint_circle_rasterizer
|
||
|
{
|
||
|
using type = circle_rasterizer_t;
|
||
|
|
||
|
/// \brief Creates a midpoint circle rasterizer
|
||
|
/// \param center_point - Point containing positive integer x co-ordinate and y co-ordinate of the
|
||
|
/// center respectively.
|
||
|
/// \param circle_radius - Radius of the circle
|
||
|
midpoint_circle_rasterizer(point_t center_point, std::ptrdiff_t circle_radius)
|
||
|
: center(center_point), radius(circle_radius)
|
||
|
{}
|
||
|
|
||
|
/// \brief Calculate the amount of points that rasterizer will output
|
||
|
std::ptrdiff_t point_count() const noexcept
|
||
|
{
|
||
|
// the reason for pulling 8 out is so that when the expression radius * cos(45 degrees)
|
||
|
// is used, it would yield the same result as here
|
||
|
// + 1 at the end is because the point at radius itself is computed as well
|
||
|
return 8 * static_cast<std::ptrdiff_t>(
|
||
|
std::round(radius * std::cos(boost::gil::detail::pi / 4)) + 1);
|
||
|
}
|
||
|
|
||
|
/// \brief perform rasterization and output into d_first
|
||
|
template <typename OutputIterator>
|
||
|
void operator()(OutputIterator d_first) const
|
||
|
{
|
||
|
auto translate_mirror_points = [this, &d_first](point_t p) {
|
||
|
*d_first++ = point_t{center.x + p.x, center.y + p.y};
|
||
|
*d_first++ = point_t{center.x + p.x, center.y - p.y};
|
||
|
*d_first++ = point_t{center.x - p.x, center.y + p.y};
|
||
|
*d_first++ = point_t{center.x - p.x, center.y - p.y};
|
||
|
*d_first++ = point_t{center.x + p.y, center.y + p.x};
|
||
|
*d_first++ = point_t{center.x + p.y, center.y - p.x};
|
||
|
*d_first++ = point_t{center.x - p.y, center.y + p.x};
|
||
|
*d_first++ = point_t{center.x - p.y, center.y - p.x};
|
||
|
};
|
||
|
std::ptrdiff_t iteration_distance = point_count() / 8;
|
||
|
std::ptrdiff_t y_current = radius;
|
||
|
std::ptrdiff_t r_squared = radius * radius;
|
||
|
translate_mirror_points({0, y_current});
|
||
|
for (std::ptrdiff_t x = 1; x < iteration_distance; ++x)
|
||
|
{
|
||
|
std::ptrdiff_t midpoint = x * x + y_current * y_current - y_current - r_squared;
|
||
|
if (midpoint > 0)
|
||
|
{
|
||
|
--y_current;
|
||
|
}
|
||
|
translate_mirror_points({x, y_current});
|
||
|
}
|
||
|
}
|
||
|
|
||
|
point_t center;
|
||
|
std::ptrdiff_t radius;
|
||
|
};
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
template <typename View, typename Rasterizer, typename Pixel>
|
||
|
struct apply_rasterizer_op<View, Rasterizer, Pixel, circle_rasterizer_t>
|
||
|
{
|
||
|
void operator()(
|
||
|
View const& view, Rasterizer const& rasterizer, Pixel const& pixel)
|
||
|
{
|
||
|
std::vector<point_t> trajectory(rasterizer.point_count());
|
||
|
rasterizer(std::begin(trajectory));
|
||
|
|
||
|
for (auto const& point : trajectory)
|
||
|
{
|
||
|
view(point) = pixel;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} //namespace detail
|
||
|
|
||
|
}} // namespace boost::gil
|
||
|
|
||
|
#endif
|