libcarla/include/system/boost/geometry/formulas/vertex_latitude.hpp

148 lines
4.4 KiB
C++
Raw Normal View History

2024-10-18 13:19:59 +08:00
// Boost.Geometry
// Copyright (c) 2016-2020 Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_FORMULAS_MAXIMUM_LATITUDE_HPP
#define BOOST_GEOMETRY_FORMULAS_MAXIMUM_LATITUDE_HPP
#include <boost/geometry/core/static_assert.hpp>
#include <boost/geometry/formulas/flattening.hpp>
#include <boost/geometry/formulas/spherical.hpp>
namespace boost { namespace geometry { namespace formula
{
/*!
\brief Algorithm to compute the vertex latitude of a geodesic segment. Vertex is
a point on the geodesic that maximizes (or minimizes) the latitude.
\author See
[Wood96] Wood - Vertex Latitudes on Ellipsoid Geodesics, SIAM Rev., 38(4),
637644, 1996
*/
template <typename CT>
class vertex_latitude_on_sphere
{
public:
template<typename T1, typename T2>
static inline CT apply(T1 const& lat1,
T2 const& alp1)
{
return std::acos( math::abs(cos(lat1) * sin(alp1)) );
}
};
template <typename CT>
class vertex_latitude_on_spheroid
{
public:
/*
* formula based on paper
* [Wood96] Wood - Vertex Latitudes on Ellipsoid Geodesics, SIAM Rev., 38(4),
* 637644, 1996
template <typename T1, typename T2, typename Spheroid>
static inline CT apply(T1 const& lat1,
T2 const& alp1,
Spheroid const& spheroid)
{
CT const f = formula::flattening<CT>(spheroid);
CT const e2 = f * (CT(2) - f);
CT const sin_alp1 = sin(alp1);
CT const sin2_lat1 = math::sqr(sin(lat1));
CT const cos2_lat1 = CT(1) - sin2_lat1;
CT const e2_sin2 = CT(1) - e2 * sin2_lat1;
CT const cos2_sin2 = cos2_lat1 * math::sqr(sin_alp1);
CT const vertex_lat = std::asin( math::sqrt((e2_sin2 - cos2_sin2)
/ (e2_sin2 - e2 * cos2_sin2)));
return vertex_lat;
}
*/
// simpler formula based on Clairaut relation for spheroids
template <typename T1, typename T2, typename Spheroid>
static inline CT apply(T1 const& lat1,
T2 const& alp1,
Spheroid const& spheroid)
{
CT const f = formula::flattening<CT>(spheroid);
CT const one_minus_f = (CT(1) - f);
//get the reduced latitude
CT const bet1 = atan( one_minus_f * tan(lat1) );
//apply Clairaut relation
CT const betv = vertex_latitude_on_sphere<CT>::apply(bet1, alp1);
//return the spheroid latitude
return atan( tan(betv) / one_minus_f );
}
/*
template <typename T>
inline static void sign_adjustment(CT lat1, CT lat2, CT vertex_lat, T& vrt_result)
{
// signbit returns a non-zero value (true) if the sign is negative;
// and zero (false) otherwise.
bool sign = std::signbit(std::abs(lat1) > std::abs(lat2) ? lat1 : lat2);
vrt_result.north = sign ? std::max(lat1, lat2) : vertex_lat;
vrt_result.south = sign ? vertex_lat * CT(-1) : std::min(lat1, lat2);
}
template <typename T>
inline static bool vertex_on_segment(CT alp1, CT alp2, CT lat1, CT lat2, T& vrt_result)
{
CT const half_pi = math::pi<CT>() / CT(2);
// if the segment does not contain the vertex of the geodesic
// then return the endpoint of max (min) latitude
if ((alp1 < half_pi && alp2 < half_pi)
|| (alp1 > half_pi && alp2 > half_pi))
{
vrt_result.north = std::max(lat1, lat2);
vrt_result.south = std::min(lat1, lat2);
return false;
}
return true;
}
*/
};
template <typename CT, typename CS_Tag>
struct vertex_latitude
{
BOOST_GEOMETRY_STATIC_ASSERT_FALSE(
"Not implemented for this coordinate system.",
CT, CS_Tag);
};
template <typename CT>
struct vertex_latitude<CT, spherical_equatorial_tag>
: vertex_latitude_on_sphere<CT>
{};
template <typename CT>
struct vertex_latitude<CT, geographic_tag>
: vertex_latitude_on_spheroid<CT>
{};
}}} // namespace boost::geometry::formula
#endif // BOOST_GEOMETRY_FORMULAS_MAXIMUM_LATITUDE_HPP