272 lines
9.8 KiB
C++
272 lines
9.8 KiB
C++
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
// p_square_quantile.hpp
|
||
|
//
|
||
|
// Copyright 2005 Daniel Egloff. Distributed under the Boost
|
||
|
// Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_ACCUMULATORS_STATISTICS_P_SQUARE_QUANTILE_HPP_DE_01_01_2006
|
||
|
#define BOOST_ACCUMULATORS_STATISTICS_P_SQUARE_QUANTILE_HPP_DE_01_01_2006
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <functional>
|
||
|
#include <boost/array.hpp>
|
||
|
#include <boost/mpl/placeholders.hpp>
|
||
|
#include <boost/type_traits/is_same.hpp>
|
||
|
#include <boost/parameter/keyword.hpp>
|
||
|
#include <boost/accumulators/framework/accumulator_base.hpp>
|
||
|
#include <boost/accumulators/framework/extractor.hpp>
|
||
|
#include <boost/accumulators/numeric/functional.hpp>
|
||
|
#include <boost/accumulators/framework/parameters/sample.hpp>
|
||
|
#include <boost/accumulators/framework/depends_on.hpp>
|
||
|
#include <boost/accumulators/statistics_fwd.hpp>
|
||
|
#include <boost/accumulators/statistics/count.hpp>
|
||
|
#include <boost/accumulators/statistics/parameters/quantile_probability.hpp>
|
||
|
#include <boost/serialization/boost_array.hpp>
|
||
|
|
||
|
namespace boost { namespace accumulators
|
||
|
{
|
||
|
|
||
|
namespace impl
|
||
|
{
|
||
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
// p_square_quantile_impl
|
||
|
// single quantile estimation
|
||
|
/**
|
||
|
@brief Single quantile estimation with the \f$P^2\f$ algorithm
|
||
|
|
||
|
The \f$P^2\f$ algorithm estimates a quantile dynamically without storing samples. Instead of
|
||
|
storing the whole sample cumulative distribution, only five points (markers) are stored. The heights
|
||
|
of these markers are the minimum and the maximum of the samples and the current estimates of the
|
||
|
\f$(p/2)\f$-, \f$p\f$- and \f$(1+p)/2\f$-quantiles. Their positions are equal to the number
|
||
|
of samples that are smaller or equal to the markers. Each time a new samples is recorded, the
|
||
|
positions of the markers are updated and if necessary their heights are adjusted using a piecewise-
|
||
|
parabolic formula.
|
||
|
|
||
|
For further details, see
|
||
|
|
||
|
R. Jain and I. Chlamtac, The P^2 algorithm for dynamic calculation of quantiles and
|
||
|
histograms without storing observations, Communications of the ACM,
|
||
|
Volume 28 (October), Number 10, 1985, p. 1076-1085.
|
||
|
|
||
|
@param quantile_probability
|
||
|
*/
|
||
|
template<typename Sample, typename Impl>
|
||
|
struct p_square_quantile_impl
|
||
|
: accumulator_base
|
||
|
{
|
||
|
typedef typename numeric::functional::fdiv<Sample, std::size_t>::result_type float_type;
|
||
|
typedef array<float_type, 5> array_type;
|
||
|
// for boost::result_of
|
||
|
typedef float_type result_type;
|
||
|
|
||
|
template<typename Args>
|
||
|
p_square_quantile_impl(Args const &args)
|
||
|
: p(is_same<Impl, for_median>::value ? float_type(0.5) : args[quantile_probability | float_type(0.5)])
|
||
|
, heights()
|
||
|
, actual_positions()
|
||
|
, desired_positions()
|
||
|
, positions_increments()
|
||
|
{
|
||
|
for(std::size_t i = 0; i < 5; ++i)
|
||
|
{
|
||
|
this->actual_positions[i] = i + float_type(1.);
|
||
|
}
|
||
|
|
||
|
this->desired_positions[0] = float_type(1.);
|
||
|
this->desired_positions[1] = float_type(1.) + float_type(2.) * this->p;
|
||
|
this->desired_positions[2] = float_type(1.) + float_type(4.) * this->p;
|
||
|
this->desired_positions[3] = float_type(3.) + float_type(2.) * this->p;
|
||
|
this->desired_positions[4] = float_type(5.);
|
||
|
|
||
|
|
||
|
this->positions_increments[0] = float_type(0.);
|
||
|
this->positions_increments[1] = this->p / float_type(2.);
|
||
|
this->positions_increments[2] = this->p;
|
||
|
this->positions_increments[3] = (float_type(1.) + this->p) / float_type(2.);
|
||
|
this->positions_increments[4] = float_type(1.);
|
||
|
}
|
||
|
|
||
|
template<typename Args>
|
||
|
void operator ()(Args const &args)
|
||
|
{
|
||
|
std::size_t cnt = count(args);
|
||
|
|
||
|
// accumulate 5 first samples
|
||
|
if(cnt <= 5)
|
||
|
{
|
||
|
this->heights[cnt - 1] = args[sample];
|
||
|
|
||
|
// complete the initialization of heights by sorting
|
||
|
if(cnt == 5)
|
||
|
{
|
||
|
std::sort(this->heights.begin(), this->heights.end());
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
std::size_t sample_cell = 1; // k
|
||
|
|
||
|
// find cell k such that heights[k-1] <= args[sample] < heights[k] and adjust extreme values
|
||
|
if (args[sample] < this->heights[0])
|
||
|
{
|
||
|
this->heights[0] = args[sample];
|
||
|
sample_cell = 1;
|
||
|
}
|
||
|
else if (this->heights[4] <= args[sample])
|
||
|
{
|
||
|
this->heights[4] = args[sample];
|
||
|
sample_cell = 4;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
typedef typename array_type::iterator iterator;
|
||
|
iterator it = std::upper_bound(
|
||
|
this->heights.begin()
|
||
|
, this->heights.end()
|
||
|
, args[sample]
|
||
|
);
|
||
|
|
||
|
sample_cell = std::distance(this->heights.begin(), it);
|
||
|
}
|
||
|
|
||
|
// update positions of markers above sample_cell
|
||
|
for(std::size_t i = sample_cell; i < 5; ++i)
|
||
|
{
|
||
|
++this->actual_positions[i];
|
||
|
}
|
||
|
|
||
|
// update desired positions of all markers
|
||
|
for(std::size_t i = 0; i < 5; ++i)
|
||
|
{
|
||
|
this->desired_positions[i] += this->positions_increments[i];
|
||
|
}
|
||
|
|
||
|
// adjust heights and actual positions of markers 1 to 3 if necessary
|
||
|
for(std::size_t i = 1; i <= 3; ++i)
|
||
|
{
|
||
|
// offset to desired positions
|
||
|
float_type d = this->desired_positions[i] - this->actual_positions[i];
|
||
|
|
||
|
// offset to next position
|
||
|
float_type dp = this->actual_positions[i + 1] - this->actual_positions[i];
|
||
|
|
||
|
// offset to previous position
|
||
|
float_type dm = this->actual_positions[i - 1] - this->actual_positions[i];
|
||
|
|
||
|
// height ds
|
||
|
float_type hp = (this->heights[i + 1] - this->heights[i]) / dp;
|
||
|
float_type hm = (this->heights[i - 1] - this->heights[i]) / dm;
|
||
|
|
||
|
if((d >= float_type(1.) && dp > float_type(1.)) || (d <= float_type(-1.) && dm < float_type(-1.)))
|
||
|
{
|
||
|
short sign_d = static_cast<short>(d / std::abs(d));
|
||
|
|
||
|
// try adjusting heights[i] using p-squared formula
|
||
|
float_type h = this->heights[i] + sign_d / (dp - dm) * ((sign_d - dm) * hp
|
||
|
+ (dp - sign_d) * hm);
|
||
|
|
||
|
if(this->heights[i - 1] < h && h < this->heights[i + 1])
|
||
|
{
|
||
|
this->heights[i] = h;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// use linear formula
|
||
|
if(d > float_type(0))
|
||
|
{
|
||
|
this->heights[i] += hp;
|
||
|
}
|
||
|
if(d < float_type(0))
|
||
|
{
|
||
|
this->heights[i] -= hm;
|
||
|
}
|
||
|
}
|
||
|
this->actual_positions[i] += sign_d;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
result_type result(dont_care) const
|
||
|
{
|
||
|
return this->heights[2];
|
||
|
}
|
||
|
|
||
|
// make this accumulator serializeable
|
||
|
// TODO: do we need to split to load/save and verify that P did not change?
|
||
|
template<class Archive>
|
||
|
void serialize(Archive & ar, const unsigned int file_version)
|
||
|
{
|
||
|
ar & p;
|
||
|
ar & heights;
|
||
|
ar & actual_positions;
|
||
|
ar & desired_positions;
|
||
|
ar & positions_increments;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
float_type p; // the quantile probability p
|
||
|
array_type heights; // q_i
|
||
|
array_type actual_positions; // n_i
|
||
|
array_type desired_positions; // n'_i
|
||
|
array_type positions_increments; // dn'_i
|
||
|
};
|
||
|
|
||
|
} // namespace detail
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
// tag::p_square_quantile
|
||
|
//
|
||
|
namespace tag
|
||
|
{
|
||
|
struct p_square_quantile
|
||
|
: depends_on<count>
|
||
|
{
|
||
|
/// INTERNAL ONLY
|
||
|
///
|
||
|
typedef accumulators::impl::p_square_quantile_impl<mpl::_1, regular> impl;
|
||
|
};
|
||
|
struct p_square_quantile_for_median
|
||
|
: depends_on<count>
|
||
|
{
|
||
|
/// INTERNAL ONLY
|
||
|
///
|
||
|
typedef accumulators::impl::p_square_quantile_impl<mpl::_1, for_median> impl;
|
||
|
};
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
// extract::p_square_quantile
|
||
|
// extract::p_square_quantile_for_median
|
||
|
//
|
||
|
namespace extract
|
||
|
{
|
||
|
extractor<tag::p_square_quantile> const p_square_quantile = {};
|
||
|
extractor<tag::p_square_quantile_for_median> const p_square_quantile_for_median = {};
|
||
|
|
||
|
BOOST_ACCUMULATORS_IGNORE_GLOBAL(p_square_quantile)
|
||
|
BOOST_ACCUMULATORS_IGNORE_GLOBAL(p_square_quantile_for_median)
|
||
|
}
|
||
|
|
||
|
using extract::p_square_quantile;
|
||
|
using extract::p_square_quantile_for_median;
|
||
|
|
||
|
// So that p_square_quantile can be automatically substituted with
|
||
|
// weighted_p_square_quantile when the weight parameter is non-void
|
||
|
template<>
|
||
|
struct as_weighted_feature<tag::p_square_quantile>
|
||
|
{
|
||
|
typedef tag::weighted_p_square_quantile type;
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct feature_of<tag::weighted_p_square_quantile>
|
||
|
: feature_of<tag::p_square_quantile>
|
||
|
{
|
||
|
};
|
||
|
|
||
|
}} // namespace boost::accumulators
|
||
|
|
||
|
#endif
|