139 lines
4.0 KiB
C++
139 lines
4.0 KiB
C++
|
// (C) Copyright Nick Thompson 2020.
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_MATH_TOOLS_LUROTH_EXPANSION_HPP
|
||
|
#define BOOST_MATH_TOOLS_LUROTH_EXPANSION_HPP
|
||
|
|
||
|
#include <vector>
|
||
|
#include <ostream>
|
||
|
#include <iomanip>
|
||
|
#include <cmath>
|
||
|
#include <limits>
|
||
|
#include <stdexcept>
|
||
|
|
||
|
namespace boost::math::tools {
|
||
|
|
||
|
template<typename Real, typename Z = int64_t>
|
||
|
class luroth_expansion {
|
||
|
public:
|
||
|
luroth_expansion(Real x) : x_{x}
|
||
|
{
|
||
|
using std::floor;
|
||
|
using std::abs;
|
||
|
using std::sqrt;
|
||
|
using std::isfinite;
|
||
|
if (!isfinite(x))
|
||
|
{
|
||
|
throw std::domain_error("Cannot convert non-finites into a Luroth representation.");
|
||
|
}
|
||
|
d_.reserve(50);
|
||
|
Real dn1 = floor(x);
|
||
|
d_.push_back(static_cast<Z>(dn1));
|
||
|
if (dn1 == x)
|
||
|
{
|
||
|
d_.shrink_to_fit();
|
||
|
return;
|
||
|
}
|
||
|
// This attempts to follow the notation of:
|
||
|
// "Khinchine's constant for Luroth Representation", by Sophia Kalpazidou.
|
||
|
x = x - dn1;
|
||
|
Real computed = dn1;
|
||
|
Real prod = 1;
|
||
|
// Let the error bound grow by 1 ULP/iteration.
|
||
|
// I haven't done the error analysis to show that this is an expected rate of error growth,
|
||
|
// but if you don't do this, you can easily get into an infinite loop.
|
||
|
Real i = 1;
|
||
|
Real scale = std::numeric_limits<Real>::epsilon()*abs(x_)/2;
|
||
|
while (abs(x_ - computed) > (i++)*scale)
|
||
|
{
|
||
|
Real recip = 1/x;
|
||
|
Real dn = floor(recip);
|
||
|
// x = n + 1/k => lur(x) = ((n; k - 1))
|
||
|
// Note that this is a bit different than Kalpazidou (examine the half-open interval of definition carefully).
|
||
|
// One way to examine this definition is better for rationals (it never happens for irrationals)
|
||
|
// is to consider i + 1/3. If you follow Kalpazidou, then you get ((i, 3, 0)); a zero digit!
|
||
|
// That's bad since it destroys uniqueness and also breaks the computation of the geometric mean.
|
||
|
if (recip == dn) {
|
||
|
d_.push_back(static_cast<Z>(dn - 1));
|
||
|
break;
|
||
|
}
|
||
|
d_.push_back(static_cast<Z>(dn));
|
||
|
Real tmp = 1/(dn+1);
|
||
|
computed += prod*tmp;
|
||
|
prod *= tmp/dn;
|
||
|
x = dn*(dn+1)*(x - tmp);
|
||
|
}
|
||
|
|
||
|
for (size_t i = 1; i < d_.size(); ++i)
|
||
|
{
|
||
|
// Sanity check:
|
||
|
if (d_[i] <= 0)
|
||
|
{
|
||
|
throw std::domain_error("Found a digit <= 0; this is an error.");
|
||
|
}
|
||
|
}
|
||
|
d_.shrink_to_fit();
|
||
|
}
|
||
|
|
||
|
|
||
|
const std::vector<Z>& digits() const {
|
||
|
return d_;
|
||
|
}
|
||
|
|
||
|
// Under the assumption of 'randomness', this mean converges to 2.2001610580.
|
||
|
// See Finch, Mathematical Constants, section 1.8.1.
|
||
|
Real digit_geometric_mean() const {
|
||
|
if (d_.size() == 1) {
|
||
|
return std::numeric_limits<Real>::quiet_NaN();
|
||
|
}
|
||
|
using std::log;
|
||
|
using std::exp;
|
||
|
Real g = 0;
|
||
|
for (size_t i = 1; i < d_.size(); ++i) {
|
||
|
g += log(static_cast<Real>(d_[i]));
|
||
|
}
|
||
|
return exp(g/(d_.size() - 1));
|
||
|
}
|
||
|
|
||
|
template<typename T, typename Z2>
|
||
|
friend std::ostream& operator<<(std::ostream& out, luroth_expansion<T, Z2>& scf);
|
||
|
|
||
|
private:
|
||
|
const Real x_;
|
||
|
std::vector<Z> d_;
|
||
|
};
|
||
|
|
||
|
|
||
|
template<typename Real, typename Z2>
|
||
|
std::ostream& operator<<(std::ostream& out, luroth_expansion<Real, Z2>& luroth)
|
||
|
{
|
||
|
constexpr const int p = std::numeric_limits<Real>::max_digits10;
|
||
|
if constexpr (p == 2147483647)
|
||
|
{
|
||
|
out << std::setprecision(luroth.x_.backend().precision());
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
out << std::setprecision(p);
|
||
|
}
|
||
|
|
||
|
out << "((" << luroth.d_.front();
|
||
|
if (luroth.d_.size() > 1)
|
||
|
{
|
||
|
out << "; ";
|
||
|
for (size_t i = 1; i < luroth.d_.size() -1; ++i)
|
||
|
{
|
||
|
out << luroth.d_[i] << ", ";
|
||
|
}
|
||
|
out << luroth.d_.back();
|
||
|
}
|
||
|
out << "))";
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|
||
|
#endif
|